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Abstract

When a distinct cultural region forms, its rate of absorption
into the surrounding culture may be an important variable
to take into account when attempting to minimise conflict.
This paper describes a re-implementation of Axelrod’s agent-
based model of cultural dissemination, and uses it to inves-
tigate how random drift influences the longevity of distinct
regions. Cultural regions are found to be surprisingly resis-
tant to such memetic drift.

Introduction
Cultural artefacts such as beliefs, behaviours, attitudes, lan-
guages, art and music tend to spread through populations.
Dawkins (1976) proposes a framework for viewing this
spread as a Darwinian process. He calls the cultural repli-
cators themselves “memes” and suggests that many aspects
of human society may be explained using this paradigm.

Given that beliefs, attitudes and behaviour tend to be
passed between people when they interact, how is cultural
diversity maintained? Axelrod (1997) describes an abstract
agent-based simulation of cultural dissemination to show
that global diversity can be maintained despite local con-
vergence.

When a distinct cultural region forms or arrives within
a larger culture it may take some time before it becomes
assimilated into its surroundings. An understanding of this
phenomenon may be important in our desire for a peaceful
society, free of tensions between cultural groups.

This paper describes a re-implementation of Axelrod’s
model and extends it to investigate how cultural drift (ran-
dom mutation of cultural traits) affects the longevity of cul-
tural distinctions.

Background
Memetics
In The Selfish Gene (1976), Dawkins introduces the concept
of the meme to highlight the fact that there is nothing special
about the gene as the fundamental unit of natural selection.
This honour should be given to the more abstract replicator,
“any unit of which copies are made, with occasional errors,

and with some influence or power over their own probability
of replication” (Dawkins, 2003, pp.149). Memes are another
example of a replicator, and have arisen relatively recently
on Earth. They are units of human culture which are passed
on by imitation. Examples include ideas, melodies, beliefs,
fashions, and technologies.

Like genes, memes fulfil the three criteria necessary for
the Darwinian algorithm to operate. They are passed from
individual to individual through imitation (heredity). Some
are more successful at spreading than others (selection). Im-
itation may be imperfect, and new cultural artefacts may
arise as novel combinations of others (variation).

Dawkins went on to suggest how this paradigm could be
useful in explaining some features of human culture (such
as religions: large complexes of many mutually supportive
co-adapted memes). Others have taken the idea further and
expanded it to other fields, including the problem of human
consciousness itself, the “ultimate” meme complex (Black-
more, 1999).

Maintenance of Differences: Axelrod’s Model
If this process of memetic transmission between individu-
als when they interact is common, how is cultural diver-
sity maintained? Several mechanisms have been proposed
to explain why cultural convergence stops before it reaches
completion. Most are based on the semantics of the cul-
tural artefacts themselves, such as “preference for extreme
views” (Abelson and Bernstein, 1963) or on the specifics of
the environment the population inhabits (for example, geo-
graphical isolation).

Axelrod (1997) proposes an abstract model based on the
fundamental principle that “the transfer of ideas occurs most
frequently between individuals . . . who are similar in cer-
tain attributes such as beliefs, education, social status, and
the like.”

Modelling Cultural Dissemination
The Abstract Meme
Although he never uses the terminology of memetics, Ax-
elrod’s cultural attributes are clearly analogous. His model
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abstracts away the content, or semantics, of the memes and
leaves behind a list of cultural features. Each feature may
take one of a range of values. The values can be thought of
as metaphors for the alternative forms of the cultural arte-
fact (if the feature is a hat, the alternative values may be a
red hat, a blue hat, a green hat etc). A culture is represented
as a string of digits such as “5, 2, 4, 5, 1”. In this case the
first feature has the fifth of its possible values, and so on.

In abstracting away the semantics of the memes, Axel-
rod has removed two of the three prerequisites of the Dar-
winian process. No trait on the cultural string is any more
likely to be passed on than any other, and so there is no con-
cept of “fitness” upon which selection may operate. Also,
when a trait is passed from one culture to another it is al-
ways copied with perfect fidelity: there is no mutation and
therefore no variation. His model is only one of heredity, and
he asks whether cultural diversity can be maintained even in
this most basic situation.

Key Assumptions
Axelrod makes two simple assumptions in his model:

• People are more likely to interact with others who are
more similar to them, i.e. share more of their cultural
traits.

• Interactions between people are likely to facilitate cultural
transmission, increasing the number of traits shared be-
tween the two interacting parties.

The Model
Axelrod’s model can be described as a randomly updated
asynchronous cellular automata. The basic configuration is a
square grid of cells. Each cell in the grid represents an agent,
and each has its own culture string. Agents may be thought
of as individual people, but due to their non-mobility, Ax-
elrod treats them as homogeneous “villages” with a single
culture string.

At each step, a site is chosen at random to be active. One
of its neighbours (north, south, east or west) is also chosen
at random.

With probability equal to their cultural similarity, these
two sites interact. An interaction consists of select-
ing at random a feature on which the active site and
its neighbour differ (if there is one) and changing the
active site’s trait on this feature to the neighbour’s trait
on this feature (Axelrod, 1997).

These steps are then repeated for as many events as de-
sired.

For example, consider an initial set of sites with randomly
assigned cultures. A site is selected at random to be “active”,
and has the culture string “5, 2, 4, 5, 1”. One of its neigh-
bours is then selected, which has the culture string “3, 9, 4,

5, 7”. By chance, these sites share two of their five cultural
features (the third and fourth) and so have a 40% similarity
and thus a 40% chance of interacting. If they do interact,
one of the traits they do not share is copied from the active
site to its neighbour. They are now 60% similar, and thus
more likely to interact in the future if they are again selected
at random.

Distinct Cultural Regions
Can this process of local convergence produce globally dis-
tinct cultural regions? To illustrate this, a sample run of the
model is described here. The same parameters as Axelrod’s
initial example were used: five cultural features, each with
ten possible values, on a 10×10 grid.

The similarity between two adjacent agents on the grid is
shown by the opacity of the line separating them. A black
line (100% opaque) indicates no shared features, while a
white line (0% opaque and invisible against the white back-
ground) indicates that all features are shared. The darker the
line, the lower the similarity.

Figure 1: Initial configuration

Initially the value of each cultural feature is chosen at ran-
dom for each agent (Figure 1). They are unlikely to share
many features in common, and so most of the dividing lines
are black.

Figure 2: After 25,000 events

After 25,000 events, many cultural regions (groups of ad-
jacent sites with identical cultures) have begun to form (Fig-
ure 2).
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Figure 3: After 50,000 events

After 50,000 events, the cultural regions have become
larger, encompassing more sites. Many of the remaining
boundaries are light grey, indicating that the sites they di-
vide differ by only one or two features. (Figure 3).

Figure 4: After 100,000 events

By 100,000 events, five clear cultural regions have
emerged. The sub-regions within the largest region differ
by only one feature. (Figure 4).

Figure 5: After 125,000 events

By 125,000 events, all sub-regions have disappeared and
five main regions are clear. These are surrounded by opaque
black lines, indicating that the adjacent sites at their bound-
aries have no features in common. The simulation is now
stable as the probability of any further interactions between
members of different regions is zero. (Figure 5).

The above run is a representative example of the be-
haviour of the model over time with different (randomly se-
lected) initial cultural traits. It is clear that global cultural
distinctions can emerge from local convergence.

The Number of Regions
To check the validity of the re-implementation, the simula-
tion was run twenty times with different initial random cul-
ture strings. A mean of 3.35 stable regions was found, which
is close to Axelrod’s average of 3.2 regions for a model with
the same parameters.

Axelrod’s Experiments
Axelrod goes on to perform several experiments using the
simulation by varying parameters (dimensions of grid, num-
ber of features in the culture string, number of possible traits
of each feature, number of neighbours the active cell can in-
teract with). He draws some interesting conclusions from
these experiments, including the non-intuitive result that the
average number of stable regions formed decreases as the
size of the territory increases.

The difficulty with making such inferences from an ab-
stract model is that it is not clear whether they are funda-
mental properties of the system (and thus could be applied
to the more realistic, non-abstract situations upon which the
model is based) or whether they are artefacts of the simplifi-
cations and assumptions built into the simulation itself.

In order to reduce this problem, it is useful to reintroduce
one or more of the features that was removed for the sake of
simplicity.

Cultural Drift
Axelrod suggests several possible extensions to the model,
one of which he calls cultural drift, modelled as a sponta-
neous change of the value of one of the cultural features in
a culture. This is analogous to a “mutation” of a meme, a
random change in some aspect of culture. If the feature in
question is a red hat, a mutation might involve dropping it
into a bucket of green paint. 1 Intuitively, such drift may be
common in real populations of interacting individuals.

Modelling Drift
It is simple to add random drift to the above model. At each
step of the simulation, each feature of the current active site
has probability p of undergoing a mutation. If a feature is
selected for mutation, its trait is simply changed to some
random value in the range of acceptable traits.

1The mutation may also not be random from a semantic point
of view - perhaps an individual comes up with a novel new idea
which can then be passed on to others. For the purposes of the
model, though, such creative acts remain irrelevant. All changes
are treated as random.
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Analysing the Effect of Drift
As Axelrod points out, it is not obvious how to analyse the
effect of drift on the basic model. Without drift, the model
eventually stabilises and no further change takes place. The
number of distinct regions can then be used as a measure of
the heterogeneity of the grid.

When random drift is added, the model never completely
stabilises, because a mutation may increase the similarity
of two distinct regions (allowing future interactions) or de-
crease the similarity of two sites within a region (creating
a slight boundary between them which may then increase
due to future interactions). This raises two practical ques-
tions: how to measure heterogeneity of the grid, and when
to end the simulation. Axelrod proposes several possible an-
swers to each question, and suggests that preliminary work
has shown the interaction between drift and the other param-
eters of the model to be quite complex.

However, this approach suffers from the same problems
discussed above. While it may be possible to perform exten-
sive experiments on the model to analyse the effect of drift,
it is not clear how any results found would transfer to the
real world.

For example, it may be possible to find a balance be-
tween mutation rate and the other parameters which allows
the emergence of distinct regions to be preserved despite
drift. However, many other factors may be present in the
real world which influence this equilibrium but are ignored
by the model. Gatherer (2004) uses a genetic algorithm on
a similar model to Axelrod’s to locate such an equilibrium,
and finds that maximal memetic isolation depends on an un-
likely combination of parameters. However, his model does
not take into account many real-world variables which may
be significant.

A more fruitful question to ask might be: given that a pro-
cess of local convergence may form distinct cultural regions
in the absense of drift, how does drift affect the stability of
those regions? This approach has two main advantages:

• By analysing the effect of drift on the stability of pre-
existing regions, we make no assumptions about the orig-
inal source of the cultural regions themselves. Axelrod’s
model proposes one mechanism by which such distinc-
tions may form, but he presents many alternative possi-
bilities which have been suggested by others, and which
may co-exist with his model. All of these can be taken
into account.

• By simplifying the initial conditions of the model signif-
icantly, it is much easier to assess the stability of regions
by observation, reducing the practical problems discussed
above.

The Stability of Distinct Cultural Regions
To analyse how drift affects the stability of cultural regions,
the initial conditions of the model were first altered to make

the simulation more simple.
Instead of an initially random set of culture strings, the

entire grid was made homogeneous by setting the value of
every feature to zero. Then, a single mutant site was created
by choosing a site at random and mutating all of its features
to some random value other than zero. A sample initial con-
figuration of the simulation is shown in Figure 6.

Figure 6: Initial configuration

The single mutant site is entirely distinct from the sur-
rounding region (it shares no traits with its neighbours). In
the absence of any drift, this configuration would be com-
pletely stable.

Cultural drift was then added to the model in the man-
ner described above (see section entitled “Modelling Drift”).
All other features of the model, such as the random pro-
cess of convergence between neighbouring sites, remain un-
changed. Also, the parameters used above (five cultural fea-
tures, each with ten possible values, on a 10×10 grid) were
maintained for simplicity.

The model was then run for a large number of events, and
observed until the distinct mutant site disappeared (was ab-
sorbed into the surrounding region or became otherwise in-
distinguishable from the background activity). 2

This process of absorption begins when a neighbouring
site happens to acquire the same value in one of its features
as the mutant site (either by direct mutation of that site’s fea-
ture, or by the spread of that trait from elsewhere on the grid
by the normal process of interaction). Now the mutant site
shares a feature with one of its neighbours, it has a chance
of an interaction with that neighbour which would increase
the similarity yet further. In general, once a single interac-
tion between the mutant site and its neighbour took place,
the mutant site tended to disappear fairly rapidly (< 5000
events).

A sample run of this process, using a probability p =
0.0001 of mutation per feature at the active site per event,
is shown below.

2To allow for unattended monitoring, this process was observed
by repeatedly taking “screenshots” of the grid at 5000 event inter-
vals. So the results are accurate to the nearest 5000 events follow-
ing the disappearance of the mutant region.
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Figure 7: After 30,000 events

Single sites which are mutated become slightly differenti-
ated from the surrounding region. Often, these are immedi-
ately reabsorbed, but occasionally they can form small clus-
ters of differentiated sites (Figure 7).

Figure 8: After 40,000 events

Usually, these small regions are short-lived, but occasion-
ally they can “seed” larger disturbances, and chaotic patterns
of differentiated regions can grow to cover much of the grid.
(Figure 8).

Figure 9: After 70,000 events

Often, even these large disturbances eventually resettle
into stability without affecting the mutant site. (Figure 9).

Figure 10: After 120,000 events

After 120,000 events, a new set of distinct regions has
emerged and made contact with the single mutant site (Fig-
ure 10).

Figure 11: After 125,000 events

Just 5000 events later, the mutant site has been absorbed
by the surrounding region and is no longer visible (Figure
11).

From the above run, it can be seen that with low muta-
tion probabilities (low levels of drift), distinct cultural re-
gions can survive significant numbers of interaction events
before disappearing. Over ten such runs (with p = 0.0001)
the mean number of events before the mutant region was ab-
sorbed was 108,000.

Rate of Cultural Drift

To further investigate these findings, the experiment was re-
peated with various mutation probabilities (rates of cultural
drift). For each probability value, the model was run ten
times, and the mean number of events to the disappearance
of the mutant region was found. A graph of the results is
shown in Figure 12.
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Figure 12: The effect of cultural drift on the longevity of
distinct regions

What is surprising about these findings is that even as the
mutation probability is increased by several orders of mag-
nitude, the longevity of the mutant cultural region only de-
creases relatively slowly. One might expect that in a culture
with a very high rate of drift, new cultural regions may be
absorbed very rapidly as common features may appear reg-
ularly by chance, facilitating interaction across boundaries.
The results of this experiment suggest that despite such high
levels of drift, distinct regions may persist for significant pe-
riods of time.

Discussion
It is difficult (and probably unhelpful) to equate these find-
ings with any concrete figures which may be found in the
real world, as it is not clear what the rate of interaction (num-
ber of “events” per year, say) would be, and such values may
vary widely in different regions.

In general though, it is possible to conclude that in rela-
tively homogeneous cultures with low rates of cultural drift
(as may be expected to be found in isolated, monocultural re-
gions), any distinct cultures which do form are likely to per-
sist for significant periods of time before being assimilated
into the surrounding culture. These distinct cultures may ap-
pear through a number of possible mechanisms (including
perhaps Axelrod’s suggested local-interaction model), but
an obvious example might be an invading or migrating group
of people from a distant region with a very different culture.
Finding aspects of culture in common with the invaders may
be difficult, reducing the chances of further interaction and
absorption.

The second result suggests that even in a culture with a
high rate of drift (such as a modern, fast-changing multicul-
tural society) it may take a considerable amount of time for a
new cultural group to integrate into its surroundings. This is

often intuitively true when new groups or individuals move
into an established culture from afar.

Note that this finding does not depend on the content of
the memes in either the host culture or the new, distinct cul-
ture. It is purely a stochastic interaction process between two
different cultures, indifferent to the semantics of the cultural
features.

It is important to bear in mind that although the reintro-
duction of cultural drift brought the model more closely in
line with the real world, many important aspects are still
missing. The main one is the third feature (in addition to
heredity and variation) necessary for Darwinian evolution to
take place: selection. The heart of the memetic paradigm
is that individual memes or groups of memes may have a
greater “reproduction” rate than others, and so may come
to dominate in the population. There are several ways this
could be added to the model, and this would be an interesting
direction for future work. Even without this, it may prove to
be useful to translate Axelrod’s experiments and conclusions
into the language of memes, as it may allow them to be in-
tegrated into existing memetic theory.

Summary
This paper has described a re-implementation of Axelrod’s
agent-based model of cultural dissemination, and discussed
its parallels with memetic theory. The model was then used
to investigate the longevity of distinct cultural regions in the
presence of varying levels of cultural drift. It was found
that cultural distinctions can be surprisingly robust, even if
mutation rates are high.
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