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Abstract

An objective of multi-agent systems is to build robust intelli-
gent systems capable of existing in complex environments.
These environments are often open, noisy and subject to
rapid, unpredictable changes. This paper will explore how
agents can bias their interactions and choices in these com-
plex environments. Existing research has investigated how
agents can bias their interactions based on factors such as
similarity, trust or reputation. Unfortunately, much of this
research has ignored how agents are influenced by their pref-
erences for certain game payoffs. This paper will show that
individual payoff preferences have a significant effect on the
behaviors that emerge within an agent environment. We ar-
gue that agents must not only determine with whom to in-
teract, but also the levels of benefit or risk these interactions
should represent. This paper presents a series of game theo-
retic simulations examining the effects of agent payoff prefer-
ences within an evolutionary setting. Our experiments show
that these factors promote tolerance throughout the popula-
tion. We provide an experimental benchmark using an almost
identical game environment where payoffs are not considered
by agents. Furthermore, we also present simulations involv-
ing noise, thereby demonstrating the ability of these more tol-
erant agents to cope with uncertainty in their environment.

Introduction
Agent interactions are often heavily biased through certain
group structures. These structures are often defined by fac-
tors such as geographical location (Axelrod, 1984), kin se-
lection (Hamilton, 1963), choice and refusal (Stanley et al.,
1995), or trust and reputation (Dellarocas, 2003). In the real
world, individuals often bias their interactions through fac-
tors such as their need for certain services, or preferences for
particular goals. As a result, we must acknowledge that not
all agent interactions are identical and are driven by individ-
ual preferences and needs. Therefore in this paper we will
examine through game theoretic simulations how agent pay-
off preferences influence the overall agent population. Some
researchers have examined the payoffs commonly used in
the Prisoners Dilemma and concluded that certain payoffs
promote cooperation (Fogel, 1993). The implications of
agent payoff preferences when determining their peer inter-
actions remain to be fully explored and understood.

This paper shows how game payoff preferences directly
influence the levels of tolerance and reciprocity throughout
an agent population. Existing research has not examined the
significance of these agent payoff preferences. For exam-
ple, in a multi-agent environment an agent may only trust
one of its peers. Yet, in order to satisfy its individual pref-
erences this agent may choose to interact with a less trusted
peer. This decision could be based on a payoff preference or
similarly a preference for a service being offered. In short,
within a game theoretic model, agent interactions should re-
flect that agents are free to bias their interactions based on
their preferred peers and also their preferred games. As a
result we will simulate an environment where agents may
offer and choose games based upon their preferred payoff
values. Some agents are risk takers and prefer games which
have higher risk payoffs, while others are more risk averse
and prefer game payoffs which hold lower risk.

Previous research of this type has focused primarily on
IPD games which remain constant throughout the popula-
tion. Recent research has started to explore the effects of
allowing the game payoffs to change (Taylor and Nowak,
2006; Howley and O’Riordan, 2006a, 2008). The need to
study these interactions stems from the fact that real world
interactions rarely remain identical indefinitely. In reality,
an agents interactions will be determined through its bias
towards preferred individuals and its bias towards achiev-
ing specific goals. This paper will investigate aspects of
this statement and in particular address the following two
research questions:

1. What are the effects of game payoff preferences on the
overall agent population and the strategy genes?

2. What strategies are most successful in this variable payoff
environment when noise is introduced?

In the following section of the paper we outline our mo-
tivations and aims. We will then discuss various aspects
of background and related research from the subject do-
main. This will involve existing research in the areas of
spatial, tagging and trust models. Subsequent sections will
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describe our evolutionary algorithm, simulator design, pa-
rameters and experimental setup. The results section will
present a series of experiments showing the behavior of the
overall population when alternative interaction models are
used. Stemming from these results we will outline our con-
clusions.

Aims and Motivations
The primary goal of this paper is to propose a simple ex-
tension to the traditional Iterated Prisoner’s Dilemma and
analyse the effects of this salient extension on agent inter-
actions. Previous research from the authors has examined a
number of agent interaction models. In previous work, we
examined the underlying dynamics of tag mediated interac-
tion models. We identified the significance of tag group size
on the levels of cooperation that emerge within the agent
population. We also examined the effects of openness on
trust between agents (Howley and O’Riordan, 2006b). We
found that alternative forms of openness and change effected
agents in very different ways. We also identified the depen-
dencies that can emerge between agents within a trust model
when exposed to openness. More recent research has in-
vestigated payoff variances and preferences among agents
(Howley and O’Riordan, 2008). We outline how agents like
to avail of higher payoffs through defection but this results
in the agent population exploiting each other into choosing
games with low risk payoffs. These strategy preferences
emerged to dominate the agent populations.

This paper examines the agent strategies at gene level and
presents a more detailed examination of their preferences for
certain game payoffs. Furthermore we hope to clarify the
heightened levels of tolerance present in these game envi-
ronments. We hope to ascertain the scale of these differences
and the reasons behind them. Also we hope to test these lev-
els of tolerance through introducing noise into the game in-
teractions. This differs from simulating reduced population
viscosity, or mutation which would serve to undermine co-
operation in cooperative groups. In this work we are more
interested in identifying the strategy traits that emerge when
these factors are not present.

We have extended the Prisoner’s Dilemma to reflect vari-
able payoffs, thereby scientifically capturing the effects of
agent payoff/risk preferences. Agents’ who express their
game preference based on a games ‘temptation to defect’
are in effect specifying a unique game with an associated
degree of risk. We provide a more detailed description of
this extension in later sections.

Through the results presented in this paper, we aim to ex-
tend our previous research while also demonstrating the im-
portant dimensional space which has largely been ignored
by existing research in multi-agent systems. The differences
shown in this paper present many implications for the do-
main of multi-agent research. The most important of these
involves the need to delineate between agent environments

where all interactions are of equal value and those where
interactions are not equal.

Background Research
In this paper our main topic of concern involves how agents
bias their interactions. Previous research on this topic has
examined techniques such as spatial, tagging, kin selection
and trust. In this section we will discuss some of the ex-
isting research on these topics. We will also introduce and
discuss the Iterated Prisoner’s Dilemma (IPD), which is used
throughout our simulations.

Spatial, Tagging and Kin Selection

In relation to the emergence of cooperation, one of the most
important considerations involves how agents bias their in-
teractions towards cooperative peers and away from non-
cooperative peers. In this paper we are only concerned
with the latter. Kin selection is one such interaction mech-
anism involving groups of related individuals (Hamilton,
1963). Another more common interaction model involves
agents located on a spatial topology such as a grid (Axel-
rod, 1984; Nowak and May, 1993). Agents bias their in-
teractions and therefore play peers located on adjacent cells
of the grid. Tag-mediated interaction models are based on
a similar premise. These models locate agents on an ab-
stract topology and then bias interactions based on players
proximity to each other (Holland, 1993; Riolo, 1997). Ar-
bitrary tags are similar to visible markings or labels which
may be used by agents to bias their interactions based on
their preferences. Some real world examples of tags could
include football fans recognising each other from their jer-
seys or travelers recognising each other abroad through their
native accents. Tags can provide a more general represen-
tation of agent interactions than spatial models. Later in
this paper we will outline how tag-mediated selection may
be used to structure interactions based on players individual
preferences for certain games.

Iterated Prisoner’s Dilemma

The Prisoner’s Dilemma (PD) is a simple two player, non-
zero sum, non-cooperative game. Each player must make a
decision to either cooperate (C) or defect (D). Both players
decide simultaneously and, therefore, have no prior knowl-
edge of what the other has decided. If both players coop-
erate, they receive a specific payoff. If both defect, they
receive a lower payoff. If one cooperates and the other de-
fects then the defector receives the maximum payoff and the
cooperator receives the minimum.

For this game to be classified as a dilemma in all cases,
certain constraints must be adhered to. The following is the
first constraint:

λ2 < λ4 < λ1 < λ3 (1)
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Table 1: Prisoner’s Dilemma Payoff Matrix
Players Choice Cooperate Defect

Cooperate (λ1, λ1) (λ2, λ3)
Defect (λ3, λ2) (λ4, λ4)

These conditions result inλ2 being the sucker’s payoff,
λ1 is the reward for mutual cooperation,λ4 is the punish-
ment for mutual defection, andλ3 provides the incentive or
temptation to defect. The second constraint is the following:

2λ1 > λ2 + λ3 (2)

This constraint prevents players taking alternating turns
receiving the sucker’s payoff (λ2) and the temptation to de-
fect (λ3), therefore maximising their score.

The following λ values are commonly used in the Pris-
oner’s Dilemma:λ1 = 3, λ2 = 0, λ3 = 5, λ4 = 1.

In the non-iterated game, the rational choice is to defect,
while in the finitely repeated game, it is rational to defect
on the last move and by induction to defect all the time.
This game has been used throughout numerous research do-
mains, including economics, computer science and the so-
cial sciences. More detailed discussions on the Prisoner’s
Dilemma and its various guises are widely available (Axel-
rod, 1984; Hoffmann, 2000; Delahaye et al., 2000; Kendall
et al., 2006).

Evolutionary Algorithm
The experimental results presented in this paper involve
agent environments simulated over successive generations.
In each of these generations an evolutionary algorithm is ap-
plied to reflect the real world pressures on under performing
entities and alternatively reward the best performing ones.
In this section we will outline in detail the evolutionary al-
gorithm used throughout our simulations.

In the domain of game theory, one of the most com-
mon evolutionary techniques involves replicator dynamics.
These quite general evolutionary models replicate changes
in agent’s fitness through increasing or decreasing their rep-
resentation in successive generations. Therefore in a pop-
ulation ofn species, each of which adopts a strategyi, the
population state can be represented as the following vector
at time stept (Generationt):

x t = (x t0 , .........., x tn) (3)

As a result,xt
i represents the fraction of the population

which can be considered belonging to a speciesi.

(x ti ≥ 0,

n∑

i=0

x ti = 1) (4)

The game payoffs represented in the payoff matrix are
used to determine payoff to individual species throughout

their lifetime. Payoff to a speciesi is viewed as an indicator
of fitness and thereby a measure of its reproductive success
(Smith, 1982).

jsij
t = jsij

t−1 × f(si)t−1

∑n
j=0 f(sj)t−1

(5)

The representation of a speciesi in generationt is its rep-
resentation in generationt − 1, by the fitness it achieved in
generationt − 1, as a proportion of the average population
fitness in generationt − 1. Hence, the growth rate of an
individual speciesi is proportional to its fitness.

Uncertainty and Noise

This paper presents a number of noise experiments which
investigate the effects of uncertainty on the agent popula-
tion. In previous research when we first examined payoff
preferences among agents, we observed significant levels of
intermittent defections (Howley and O’Riordan, 2008). Be-
cause of this we undertook this more detailed investigation
of these population dynamics which appeared to promote
forgiveness among agent strategies. In addition this paper
also examines this phenomenon through simulating noise in
the game environment.

Existing research has simulated uncertainty through a se-
ries of methods involving noise (Bendor et al., 1991) and re-
duced population viscosity (Howley and O’Riordan, 2006b).
In this paper we have used noise as a means of simulating
uncertainty. This will serve to test the ability of agents to
forgive opponents. Previous research has shown that more
forgiving and generous strategies perform best in noisy en-
vironments (Bendor et al., 1991).

Simulator Design

Figure 1: Game Cycle
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In this section we outline our overall simulator design. We
begin with an introduction to the game cycle (Figure. 1). We
describe how we extended the Iterated Prisoners Dilemma
(IPD) to allow agents express preferences for certain types
of games. We also outline our strategy set.

Firstly, agents play their selected opponents. They enter
IPD games using payoffs acceptable to their individual pay-
off preferences. The payoff preference of the offering agent
us used and the opponent can then chose to interact or not.
This decision is based on its own payoff preference. Once
all games are played game payoffs are totaled and averaged.
These are then used as measures of fitness for our evolution-
ary algorithm. This evolutionary algorithm uses replicator
dynamics based on fitness to determine agent representation
over successive generations. No crossover or mutation is
applied.

Agents select their opponents probabilistically based on
the proximity of their tags. This is done in a similar way to
much previous research involving tag mediated interactions.
Players with similar tags are far more likely to interact than
other pairings where there may be some difference between
players tags. This differs from common green beard dy-
namics, whereby by individuals identify each other through
their beard colour and cooperate if their beards are a simi-
lar colour and defect if they are different (Dawkins, 1976).
Our model limits peer interactions to individuals of a simi-
lar tag value, and makes no assumption about an individuals
actions towards those of a specific tag value.

Strategy Set
In order to define a strategy set, we refer to existing research
which uses three bit IPD strategies (Nowak and Sigmund,
1990). In our simulations each strategy genome includes
four genes representing probabilities of cooperation in an
initial movepi, in response to a cooperationpc and defection
pd. The final strategy genept represents an individuals game
payoff preference. Some strategies are be more inclined to
prefer lower risk games while others will prefer higher risk
games. This is similar to people who are often natural risk
takers while others are more risk averse. As we will explain
in the following section our game environment permits play-
ers to agree the ‘temptation to defect’ (TD) value in the Pris-
oner’s Dilemma game. The resulting strategy genome looks
like the following:

Genome = pi, pc, pd, pt (6)

The Variable Payoff Prisoner’s Dilemma
The extended IPD game remains similar to the original game
described earlier. It remains a simple two player dilemma
which is non-zero-sum, non-cooperative and played simul-
taneously. For this game to remain a Prisoner’s Dilemma it
must still remain within the constraints of the original game
as mentioned earlier. This game differs in that the payoffs

used in each game interaction are not always the same. The
extended game uses the following adapted payoff matrix. In
this game theλ1, λ2, λ4 payoffs remain constant while in
this extended game the value of TD is determined by the
individual players involved in each game interaction.

Table 2: Adapted IPD Payoff Matrix
Players Choice Cooperate Defect

Cooperate (λ1, λ1) (λ2, TD)
Defect (TD, λ2) (λ4, λ4)

For this game to remain a valid IPD, then the value of TD
must remain within the following range of values:

λ1 < TD < 2× λ1 (7)

The IPD payoff values used throughout this research are
as follows: λ1 = 5000, λ2 = 0, λ3 = TD, λ4 = 1. As
stated above the value of TD must always remain within the
following range: λ1 < TD < 2 × λ1. Theseλ values
provide an expressive range of possible TD values.

Our decision not to allow agents determine all game pay-
offs stems firstly from the need to maintain a valid Prisoner’s
Dilemma, and secondly that all interaction choices be based
on a fair and equal footing. One can also argue that a Pris-
oner’s Dilemma which allows the TD to change is identical
to a bounded Prisoner’s Dilemma where all payoffs are per-
mitted to change but still remain bounded by an upper payoff
limit. This is due to all the payoffs being interdependent and
relative as specified by the PD constraints. Therefore by al-
lowing the TD payoff to change, all the game payoffs change
relative to each other.

Experimental Results
In this section, we present a series of simulations involving
our multi-agent population. We present direct comparisons
between a number of multi-agent environments when using
fixed payoff games versus variable payoff games. Firstly
we examine these differences under noiseless environmen-
tal conditions. Subsequently, we present this comparison
using a noisy game environment, whereby agent actions are
effected by a degree of noise which will demonstrate more
clearly the emergence of tolerance in our variable payoff
game simulations.

All the simulations outlined in this paper involve popula-
tions of1000 agents. Each experiment is a aggregation of50
experimental runs. Each game interaction lasts20 iterations.

The first interaction model is a variable payoff model
where agents agree a TD payoff depending on their respec-
tive pt genes. As in a tag environment, players choose their
peers based on their tag (pt gene) similarity. In this model
thept gene value reflects a players preferences for games of
a certain value. A highpt gene would result in a high TD
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payoff game while a lowpt gene would result in a low TD
payoff game. This results in players with similarpt genes
interacting in games with TD payoffs proportional to their
pt genes. To determine the probability of two individuals in-
teracting we use a formula proposed in previous research on
tag-mediated interactions (Riolo, 1997). The dissimilarity
of two individuals (A and C) is defined as follows:

dA,C = |Apt − Cpt| (8)

The second interaction model is almost exactly the same.
This is a fixed payoff model which allows the players deter-
mine their peer interactions based on theirpt gene similarity.
The one significant difference is that all games use the same
fixed payoffs.λ1 = 5000, λ2 = 0, λ3 = 7500 andλ4 = 1.
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Figure 2: Average Cooperation.

We observe in the data shown in Fig. 2. the levels of co-
operation attained using two agent models. These levels of
cooperation were significantly higher in the variable payoff
model. Furthermore these levels of heightened cooperation
were also much faster to emerge. The table below presents a
number of statistics reinforcing these observations. On aver-
age this model remained 0.10 greater than the static model.
The data shown in Table 3 indicates the scale of the differ-
ences between the fixed and variable payoff environments.
These differences were found to be statistically significant.

Model µ σ

Fixed 0.6102 0.1664
Variable 0.7103 0.1390

Table 3: Average Cooperation in Noiseless Environment

The following experiments show the average values for
each strategy gene respectively. These values represent av-
erages taken throughout the agent population at the start of
each generation. From the results shown, we can ascertain
the levels of reciprocity and tolerance present throughout the

agent population. These can be identified from examining
thepc andpd gene values respectively.
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Figure 3: Fixed Payoff Game - Strategy Genes.

Fig. 3 shows average gene values recorded in the sta-
tic payoff game environment. We observe how thept gene
remains almost static. This gene experiences no evolution-
ary pressures as it serves simply as a tag for biasing inter-
actions. The value of this gene is completely random from
experiment to experiment. Therefore it’s mean value across
a large number of experiments always remains close to 0.5.
The levels of cooperation in this model as shown in the first
experiment (Fig. 2) can be attributed to the significant in-
crease in thepc gene from generation 20 onwards.
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Figure 4: Variable Payoff Game - Strategy Genes.

The levels of cooperation identified in the variable payoff
model in the initial experiment (Fig. 2.) are justified through
the data shown in the in Fig. 4. This graph shows thepd

gene reaching levels that are significantly higher than in the
static payoff model (Fig. 3.). As a result, agents are more
likely to cooperate after a defection. This indicates a degree
of tolerance or forgiveness which is far greater than in the
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static payoff environment. Furthermore, the averagepc gene
values indicate a similar likelihood of cooperation following
an opponents cooperation. This characteristic emerges very
rapidly in the initial generations of the variable payoff en-
vironment and is associated with a increased likelihood of
mutual cooperation in an agent environment.

Summary The results shown here demonstrate the clear
differences between static and variable payoff game en-
vironments. The heightened levels of cooperation identi-
fied in the variable payoff environment have been shown to
emerge through specific genetic differences in that strate-
gies that perform best in the respective game environments.
These cooperation levels stem from the emergence of tol-
erance among the participant strategies. Defection in the
static payoff model exerts no evolutionary pressure on the
agent game preferences. Yet defection in the variable pay-
off model exerts pressure on agents to chose game interac-
tions with lower TD game payoffs. This results in an agent
population who are predominantly cooperative and also pos-
sess lowpt genes. Therefore any subsequent defections in
this population incur few penalties and are tolerated through-
out the agent population. These conclusions are confirmed
through our analysis of the strategy genes in each game en-
vironment. The averagept gene value initially increases as
strategies choose high TD payoff games. They avail of these
high TD payoffs by exploiting their peers, and this rapidly
becomes more common throughout the population. Subse-
quently, these strategies start to mutually defect and begin
to suffer. Thept gene levels fall dramatically as cooperative
groups emerge to dominate the population. Strategies who
intermittently exploit to avail of certain TD payoffs thrive
in this environment. These are the underlying reasons be-
hind the increased tolerance and generosity throughout the
variable payoff model.

Noisy Environments In the previous section we examined
the similarities and differences between our static and vari-
able payoff game environments. In order to more rigorously
test our explanation of the differences between the two game
environments, we will now examine their respective dynam-
ics under noisy conditions. We represent noise as a proba-
bility that a move will be inverted from C to D or vice versa.
The following experiments show the levels of cooperation
recorded when alternative degrees of noise are simulated.

Fig. 5. shows the levels of cooperation involving simula-
tions using fixed payoff games and alternative levels of envi-
ronmental noise. From the simulations shown we can clearly
see the effects of noise on levels of cooperation. As would
be expected, 1% noise has a noticeable effect on coopera-
tion while 5% has a much more dramatic effect throughout.
These results show the extent to which strategies in the fixed
payoff environment can cope with intermittent defections.
High levels of tolerance would be very beneficial to individ-
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Figure 5: Average Cooperation

uals hoping to cope with intermittent defections.

Model Noise µ σ

Fixed 0% 0.6102 0.1664
Fixed 1% 0.4810 0.1661
Fixed 5% 0.2718 0.0390

Variable 0% 0.7103 0.1390
Variable 1% 0.6579 0.1396
Variable 5% 0.4924 0.1042

Table 4: Average Cooperation in Noisy Environments

Fig. 6. shows the effects of noise on levels of coopera-
tion in a variable payoff environment. The main differences
with the previous experiment in Fig. 5. are the levels of co-
operation recorded for 5% noise. The strategies in the vari-
able payoff environment appear to cope much better to these
levels of noise. This is reinforces our earlier conclusions
that these variable payoff environments promote tolerance
throughout an agent population.

The final set of graphs show how the gene strategy val-
ues evolved within two game environments when 5% noise
was introduced. The simulations shown in Fig. 7. represent
the fixed payoff environment. These results show the same
non convergence of thept gene, as its value carries no great
significance in the fixed payoff model. Thepi andpd genes
fall in value while thepc gene is the only gene which ap-
pears to recover in spite of the noise. The slow convergence
of thepc gene continues for about another 300 generations
and reaches a level slightly below that identified in the noise-
less experiment shown in Fig. 3. More significantly are the
values of of thepd gene which remain very low and indi-
cate low levels of tolerance throughout the agent population.
This contributes strongly to the levels of cooperation iden-
tified in Fig. 5. for this game environment using 5% noise.
It is clear that any occurrences of intermittent defections as
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a result of noise will result in mutual defection between the
participating individual agents.

Fig. 8. shows the gene values recorded in the variable
payoff model with 5% noise. This experiment shows higher
levels of tolerance as shown through thepd gene values.
Each of the strategy genes in this model continue to converge
in a similar way to their noiseless counterpart presented in
Fig. 4. but at a much slower rate. These indicate a much
higher level of tolerance throughout the game environment
and directly contribute to the heightened levels of coopera-
tion identified previously. They explain the fundamental un-
derlying dynamics which resulted to the significant results
presented in Fig. 2.

Summary This section has examined a series of specific
experimental results. These have shown the underlying dif-
ferences between static payoff game interactions and the al-
ternative agreed variable payoff model. These differences
stem from the increased ability of strategies in the variable
payoff model to forgive and tolerate intermittent defections.
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This is shown to be even more significant in a noisy environ-
ment where intermittent defections are more common. The
statistical analysis shown in the tables indicate the signifi-
cance of these differences. By demonstrating the each envi-
ronment’s ability to cope with intermittent defections, these
noise experiments show the main factors that explain the dif-
ferences first identified in Fig. 2. These noise experiments
are not intended as an extensive examination of noise and
its effects on IPD strategies. That would involve simulating
many more levels and forms of noise.

Conclusions
This paper has presented two alternative game theoretic
environments where agents play the Iterated Prisoner’s
Dilemma. Players bias their interactions through using a
designated strategy gene. Through a series of experiments,
we have shown that agent behavours can be fundamentally
effected by the introduction of a variable payoff game. To
date most research has been based on static payoff games
and the resulting conclusions have been adopted and cited
by many multi-agent researchers. We argue that variable
payoff games provide a more realistic basis for real world
agent interactions.

Initially we posed two fundamental research questions.
Firstly, we queried the influence of variable payoffs on the
agent environment. We have shown that this extension re-
sulted in a significant increase in the numbers of strategies
using higher valuepd genes. These resulted in greater levels
of forgiveness throughout the agent population. We have
also shown as previously (Howley and O’Riordan, 2008)
that these agents favor lower valuept genes. This indicates
their preference for lower TD payoff games and reinforces
the reasons why these strategies are more tolerant of defec-
tions. Reduced payoff rewards for defections would natu-
rally make the agent more tolerant of such non cooperation.
Initial exploitation for high TD games provides a significant
advantage to strategies who only play games involving lower
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risk games. These strategies then thrive and dominate the
population.

Our second question queries which are the most success-
ful strategies. From analysing the trends throughout all the
experiments, it is clear that the strategies that are successful
in fixed payoff environments are not successful in variable
payoff environments and vice-versa. The most successful
strategies in the fixed payoff environments are highly recip-
rocal and therefore not very tolerant. The most successful
strategies in the variable payoff environment are highly tol-
erant and prefer low TD games. Once noise is introduced in
the variable payoff environment, the strategies that are toler-
ant and encourage cooperation perform the best.

This paper has shown the fundamental differences be-
tween fixed and variable payoff environments from both a
high level analysis and also a gene level examination. We
have shown the intrinsic ability of variable game environ-
ments to encourage cooperation through tolerance. This
leads to higher degrees of cooperation in both noiseless and
noisy environments. These differences show the importance
to future researchers, of differentiating between multi-agent
environments where all agent interactions hold identical sig-
nificance, and those which offer alternative rewards. This
presents researchers with the possibility of encouraging tol-
erance throughout an agent population without making any
assumptions about the agent population.
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