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Abstract

Kauffman’s seminal NK model was introduced to relate the
properties of fitness landscapes to the extent and nature of
epistasis between genes. The original model considered
genomes in which the fitness contribution of each ofN genes
was influenced by the value of K other genes located either
at random or from the immediately neighbouring loci on the
genome. Both schemes ensure that (on average) every gene
is as influential as any other. More recently, the epistatic con-
nectivity between genes in natural genomes has begun to be
mapped. The topologies of these genetic networks are neither
random nor regular, but exhibit interesting structural proper-
ties. The model presented here extends the NK model to con-
sider epistatic network topologies derived from a preferential
attachment scheme which tends to ensure that some genes are
more influential than others. We explore the consequences of
this topology for the properties of the associated fitness land-
scapes.

Introduction
Recent advances in our understanding of natural genomes
are beginning to reveal patterns in genomic organisation
(Jeong et al., 2000; Barabási and Oltvai, 2004; Segrè et al.,
2004). In particular, the epistatic networks that describe the
manner in which genetically specified proteins interact with
each other during cell metabolism have been shown to ex-
hibit topologies that are scale-free in their degree distribu-
tion (Maslov and Sneppen, 2002; Fernández, 2007). In such
networks, while the vast majority of proteins are involved in
only a small number of protein-protein interactions, a few
proteins are highly influential (Barabási et al., 1999).

Here, we explore the influence of this type of epistatic
network topology on the structure of associated fitness land-
scapes using an extension of the NK model originally pro-
posed by Kauffman (1989). In the canonical form of this
model, the fitness associated with a particular genotype (i.e.,
the height associated with a particular point on the fitness
landscape) is assessed by combining the fitness contribu-
tions of the binary alleles at each of its N loci. The fit-
ness contribution of a locus, i, is determined by the allele

at i and the alleles present at K additional loci. For each
unique combination ofK+1 alleles, a unique, but randomly
determined fitness contribution is assigned. By considering
the statistical properties of ensembles of NK landscapes, the
generic influence of epistasis can be assessed.

Kauffman was able to demonstrate that the ‘ruggedness’
of a landscape increases with increasing K. For K = 0
landscapes, each locus contributes to fitness independently.
The landscape is smooth, with the fitness of adjacent geno-
types being highly correlated as a consequence of sharing
N − 1 fitness components. An adaptive walk originating at
any point on such a landscape will reach a single, unique op-
timum. Every step on such a walk will reduce the distance
to the optimum by one as the allele at one locus mutates to a
fitter variant. The mean length of such a walk is therefore N

2 .
By contrast, for landscapes where K = N − 1 a mutation
at any locus has the side effect of changing the fitness con-
tribution of the alleles at all other loci. Consequently, there
is no correlation between the fitness of neighbouring geno-
types, and the landscape is maximally rugged. A large pro-
portion ( 1

N+1 ) of genotypes are now local optima, and adap-
tive walks tend to stall after ln(N − 1) steps. Intermediate
values of K give rise to intermediate levels of ruggedness,
altering the average distance between local optima, the cor-
relation amongst locally optimal genotypes, and the fitness
distribution of local optima. For more details, see Altenberg
(1997).

In the two most frequently explored forms of the model,
the K loci that epistatically influence a particular locus, i,
may either be randomly located on the genome, or may
be the K nearest neighbour loci of i. In both cases, every
gene influences the fitness contribution of (on average) the
same number of other genes, ensuring that genes are equipo-
tent in their contribution to genotypic epistasis. Many vari-
ants of this model have been considered, and its behaviour
has been explored in various ways (Altenberg, 1997; Bar-
nett, 1998; Geard et al., 2002; Gao and Culberson, 2002;
Campos et al., 2002; Rivkin and Siggelkow, 2002; Verel
et al., 2003; Skellett et al., 2005; Kaul and Jacobson, 2007).
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Kauffman himself mentions briefly a variant of the model in
which some genes are more influential than others (Kauff-
man, 1989, pp78). Here, we develop this idea and explore
the implications of systematically manipulating the extent to
which there is a particular scale-free non-uniformity in the
degree of influence exerted by each gene on the fitness con-
tribution of the remainder of the genome.

Scale-free degree distributions have been discovered to
characterise connectivity in a wide variety of systems, from
gene regulatory networks to scientific citation networks
(Barabási et al., 1999; Rzhetsky and Gomez, 2001; Gisiger,
2001; Wolf et al., 2002; Barabási et al., 2002; Barabási,
2003). In each case, the frequency with which network
nodes exhibit degree k is proportional to k−γ , where γ > 1
(Barabási and Crandall, 2003). Scale-free networks of this
kind may be grown via a process of ‘preferential attachment’
(Barabási et al., 1999; Newman, 2001; Caldarelli et al.,
2002; Eisenberg and Levanon, 2003). Under such a scheme,
nodes are added sequentially to an initial small graph. Upon
being added to the graph, each node is allocated a number
of edges linking it to existing nodes, where the probability
of adding an edge to an existing node of degree k is propor-
tional to kα. Here, α is a model parameter governing the
strength of preferential attachment.

Networks with a scale-free topology have some distinct
properties.

Self similarity at different scales: properties of local areas
of the network are echoed in the whole.

The small-world phenomenon: shortest paths between
any pair of nodes are remarkably short (Watts and Stro-
gatz, 1998; Albert et al., 1999; Lazer and Friedman, 2005;
Giacobini et al., 2006).

Robust to random failure: removal of nodes at random
has little effect on network structure. However they are
vulnerable to attacks that target the highly connected hubs
(Albert et al., 2000; Barabási, 2003; Barabási and Cran-
dall, 2003).

This paper first specifies an extended NK model, NKα,
and describes the metrics that will be used to characterise its
fitness landscapes. Results from the novel model are then
compared with those of the canonical NK models, and their
implications discussed before, finally, some future work is
suggested.

Methods
An extensible NK model was implemented using a variation
on the hashing method described by Altenberg (Altenberg,
1994, 1997), and using an efficient hashing algorithm proven
against funnelling effects (Jenkins, 1997). The model was
validated against published data from several sources for
the Kauffman local and random variants (Kauffman, 1989;

Weinberger, 1991; Kauffman, 1993, 1995; Altenberg, 1997).
The random number generator and hashing functions were
tested using the NIST validation suite (Rukhin et al., 2001).

The network of epistatic interactions between loci was
represented as anN×N Boolean matrix,A, withAij = 1 iff
locus i influences the fitness contribution of locus j. Since
each locus always contributes to its own fitness contribu-
tion, Aii = 1 ∀i. Furthermore,

∑
iAij = K + 1 ∀j, since

each row of A contains K entries in addition to the self-
connection, corresponding to j’s incoming edges. By con-
trast, the sum of each column of A corresponds to the out-
degree of each locus, which, in general, may be free to vary
such that 1 ≤

∑
j Aij ≤ N . Under all schemes considered

here
∑
i,j Aij = N(K + 1), i.e., the total number of edges

in the network is conserved.
Kauffman’s original NK model employed two schemes

for allocating the epistatic links: local or random. In the for-
mer, each locus is influenced by its K nearest neighbours,
giving rise to an epistatic network with a ring-lattice topol-
ogy (see fig. 1a). In the latter, for each locus, K unique in-
fluential loci are chosen at random, giving rise to a random
graph topology (see fig. 1b). Under the local scheme both
in- and out-degree are uniform, whereas under the random
scheme in-degree is uniform, but the out-degree is a Poisson
distribution with a mean of K Newman et al. (2001).

Here, we introduce NKα, a variant of the NK model that
employs a scale-free epistatic topology, parametrised by a
single exponent, α. As before, the network containsN(K+
1) edges, N of which are self-connections, and each locus
has the same in-degree (K + 1). However, the out-degree
distribution approximates a power-law as a consequence of
the following preferential attachment growth process.

Initially each locus is connected only to itself, giving a
degree of 1. Subsequently, we perform K passes through
the list of loci. Each pass visits each locus once in random
order. On each visit, the visited locus is assigned one in-
coming edge from a random locus, i, chosen with probabil-
ity ∝ (ki)α, where ki is the out-degree of locus i and is up-
dated after each visit, and the magnitude of α determines the
strength of preferential attachment. This process assigns a
total ofN(K+1) edges with a power-law like degree distri-
bution, save that a ceiling threshold exists: no locus can have
more than N connections (including its self-connection).
With sufficiently high K or α, some loci will attract the
maximum N connections deforming the power-law curve.
When α = 0, the resulting epistatic matrix is equivalent
to the random map explored in the original model. Where
α > 0, increasingly skewed degree-distributions are gener-
ated, conferring increasing influence on a minority of loci
(see Fig. 1c).

Measuring landscape properties
For the model introduced here, a triple (N , K, α) speci-
fies an ensemble of landscapes that we sample and evaluate
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(a) Local (b) Random (c) Scale-free: α = 1.8

Figure 1: Epistatic maps for N = 32 with K = 8 using (a) local connectivity, (b) random connectivity, and (c) the NKα variant
with α = 1.8.

below. In addition to sampling the fitness distribution over
each landscape as a whole by sampling 10,000 genomes at
random on each landscape, we perform a number of walks
across landscapes. Walks are of two types.

Adaptive walks were carried out by simple hill-climbers.
At each step, a hill-climber calculates the fitness of all N
single bit mutation neighbours of the current genotype, and
selects one of the fitter neighbours at random to move to. If
no fitter neighbour exists, then the hill-climber has reached
a local optimum, and terminates. By undertaking multiple
independent walks on the same landscape, an assay of avail-
able local optima can be compiled. Additionally, the length
of adaptive walks is an indicator of a landscape’s ‘rugged-
ness’.

Random walks start from a random position in the land-
scape, and proceed by a series of random single-point muta-
tions. Here, random walks were terminated after 2048 steps,
as described by Weinberger (Kauffman, 1993). Such walks
allow an assay of fitness distributions, and the correlation
between the fitness of points separated by intervening geno-
types.

Results
Unless otherwise stated, genotype length is
held constant with N = 96, K ranges over
{0, 1, 2, 3, 4, 8, 16, 32, 64, 81, 95}, and α ranges over
{0.0, 0.5, 1.0, 1.5, 1.8, 2.0, 2.5}. By ‘a full range of land-
scapes’ we will mean all combinations of N and K for the
local and random variants of the original NK model, and all
combinations of N , K and α for the NKα variant. For the
majority of results presented, the data is an aggregation of
10 repetitions of all combinations, each of these repetitions
having a different seed and consequently different epistatic
matrix.

Figure 2a shows the manner in which the average length
of an adaptive walk varies with K for the landscapes con-

sidered here. While, in general, walk length increases with
K, it is also apparent that walks tend to be longer for land-
scapes with higher values of α. Moreover, for low K and
high α walks tend to involve a number of steps that exceeds
N
2 , the maximum average walk length observed for the local

and random variants.
Figure 2b demonstrates that increasing α has a dramatic

effect on the way in which K influences the mean fitness of
landscape optima. For intermediate values of K, increasing
α is associated with increasingly fit optima. In both figures
we see that as α reaches high values, its influence asymp-
totes. This results from the ceiling effect mentioned above,
which restricts the distribution of epistatic influences such
that a few loci have the maximum influence, while the re-
mainder have little or no influence at all.

For both the local and random variants of the NK model
the correlation between the fitness at a local optimum and
the fitness of its neighbours decreases with increasing K.
Here, Figure 3 compares the distribution of fitness values of
genotypes adjacent to a local optimum in a ‘local’ landscape
with the distribution of fitness values adjacent to a local opti-
mum on a landscape with relatively high α. The comparison
is made for N = 96 and K = 64, but the qualitative re-
sults are characteristic of the comparison in general. For the
local variant, fitness values adjacent to a local optimum are
relatively tightly distributed around a value somewhat lower
than the fitness at the local optimum. For the NKα vari-
ant, however, the distribution of adjacent fitnesses is much
broader with many values close to the fitness of the local
optimum, and many values far from it.

Figure 4a demonstrates that, for low K, the random NK
model variant exhibits optima with a range of basin sizes
and that there is a weak correlation between the fitness of an
optimum and the size of its basin of attraction. IncreasingK
destroys this correlation, rendering every optima essentially
equally attainable regardless of fitness (Figure 4b). How-
ever, the NKα variant gives rise to optima with a variety of
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Figure 2: The mean length and mean local optimum fitness
found for 100,000 adaptive walks for each (K,α) combina-
tion (N = 96). The arrow indicates increasing values of
0 ≤ α ≤ 2.5 for NKα variant.

basin sizes for high K landscapes, and here, optima fitness
is strongly correlated with basin size. This accounts both for
the fact that adaptive walks are taken on NKα landscapes
tend to be longer than those carried out for equivalent land-
scapes from the local or random model variants, and that
they tend to terminate at optima of higher fitness.

Kauffman used the term ‘Massif Central’ to describe a
global structure he discovered in landscapes with small K.
He used this term to refer to the tendency for high-fitness
local optima to be located in the vicinity of the global opti-
mum, rather than being randomly distributed as is the case
for high K. The inverse correlation between fitness and dis-
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Figure 3: The fitness of neighbours of a local optimum are
plotted for two landscapes (N = 96, K = 64), ordered
by fitness. Solid horizontal lines indicate the local optimum
fitness.

tance in Figure 5a and its gradual erosion in Figures 5b and
5c reflect this observation. However, when we consider the
NKα variant, we find a similar but stronger relationship with
many fit optima close to the global optimum. Unlike for the
original model variants, for the NKα variant this relationship
between optima fitness and hamming distance is strength-
ened by increasing K.

For the local and random variants of the NK model, loci
are (roughly) epistatically equipotent. However, in the NKα
model, some loci are more influential than others. How does
this affect the rate at which different loci are mutated during
an adaptive walk? At each step of an adaptive walk, plotting
the out-degree of the mutated gene (how many loci it influ-
ences epistatically) reveals that for α > 0, the most influen-
tial loci become fixed early in the adaptive walk. This effect
increases with increasing α. For fixed α and N , increasing
K increases the number of influential loci, and (if α > 0)
decreases the number of weakly connected loci. This length-
ens the phase during which influential nodes are ‘locked in.’
By contrast, in the random variant (a), the variation in out-
degree is much reduced, walks tend to be shorter, and there
is no relationship between the out-degree of a locus and its
tendency to be mutated early or late in an adaptive walk.
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(a) Random: K = 2 (b) Random: K = 16 (c) Scale-free K = 16, α = 2.5

Figure 4: The accessibility of local optima discovered by 10 repetitions of 10,000 independent adaptive walks on three classes
of landscape. Solid horizontal lines indicates mean fitness with standard deviation indicated by dashed horizontal lines. Vertical
dashed lines indicate the most frequently reached optima.
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(d) Scale-free: K = 2, α = 1.5
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(e) Scale-free: K = 4, α = 1.5
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(f) Scale-free: K = 8, α = 1.5

Figure 5: Each plot shows the hamming distance from the fittest optima found to the other optima found on 100,000 adaptive
walks with N = 96 and K = 2, 4, 8. The data has been binned, and plotted with boundaries {0,1,100,1000,2500,5000,10000}
to give a sense of the density of clustered optima. Darker tone indicates higher density of optima. The key on each plot
shows only those bins used, with an upper limit of the most dense point in the plot. For the local variant (a-c) increasing K
gradually erodes an inverse correlation between hamming distance and optima fitness. For the NKα variant, (d-f) increasing K
strengthens a similar relationship.
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Figure 6: When are influential loci mutated on an adaptive walk? For a sample of 100,000 adaptive walks, the heat map depicts
the degree of mutated loci at each time step for (a) the random model variant, (b) the NKα variant. Here, N = 96,K = 2.
The heat colour scheme is used: black indicates no mutation events, increasing to white indicating the most frequent mutation
events.
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Discussion
In general, imposing an increasingly scale-free structure on
the network of epistatic interactions brings about a number
of significant changes to the behaviour of adaptive walks
on the associated fitness landscape: longer adaptive walks,
higher fitness optima, more clustering of optima in the land-
scape and increased correlation between their fitness and the
distance between them.

When the K epistatic influences of a locus are uniformly
distributed, the resultant landscape is essentially isotropic.
Statistical properties in one part of the landscape are largely
predictive of the whole. Consequently, the effect of increas-
ing K is to impose ruggedness globally. Conversely, when
the same number of epistatic interactions are allocated non-
uniformly, the genome is structured such that there exist a
few influential loci and a majority of loci with little or no
influence. This structure gives rise to a radically anisotropic
landscape. Portions of the landscape exhibit properties that
are very different from one another. More specifically, fix-
ing alleles at influential loci confines an adaptive walk to
a relatively correlated sub-landscape, while fixing the same
number of low-influence loci confines an adaptive walk to
a much less correlated landscape. Adaptive walks on such
landscapes tend to initially spend time fixing influential loci,
since mutating these alleles can bring about significant fit-
ness changes. Once a satisfactory configuration of highly
influential loci is discovered, low influence loci can be fixed
relatively easily, since each is essentially independent from
the others.

As yet it is unclear the extent to which one might describe
NKα landscapes as modular. Are there multiple Massif Cen-
trals on these landscapes, each characterised by a cluster of
local optima of similar fitness? Or is there a more gross
organisation of optima across the landscape as a whole?
Relatedly, we have not considered assortativity in the net-
work of epistatic interactions. While it has been known for
some time that, for instance, the network of protein-protein
interactions for yeast exhibits a scale-free degree distribu-
tion, recent work has shown that although the network for
ancestral yeast has high degree proteins tending to inter-
act directly with one another, the network for contemporary
yeast is less assortative, with what has been interpreted as a
more modular structure. For instance, precursors to modern
yeast feature an epistatic network with a single hub related
to the ribosome, whereas the modern yeast network exhibits
two hubs, one ribosomal and the other related to signalling.
These hubs are connected, but only via other poorly con-
nected proteins, making the whole network appear modular
(Fernández, 2007). Scale-free network topologies tend to be
robust to failure unless the hubs are targetted (Albert et al.,
2000; Barabási, 2003; Barabási and Crandall, 2003; Jeong
et al., 2001), and a modular topology has the advantage of
preventing the failure of one hub triggering the failure of an-
other.

The preferential attachment algorithm used here defines
an epistatic network topology with a scale-free out degree,
which has significant effects on the resulting fitness land-
scape. However, the class of networks with scale-free degree
distribution encompasses a range of topologies. In future
work, we will extend the current NKα variant to consider
the influence of assortative epistatic network topologies; the
fitness landscapes and evolutionary dynamics to which they
give rise.

Conclusions
The human genome project revealed a far lower number
of genes than anticipated, increasing the significance of the
study of their interactions. By extending an existing model,
the paper demonstrates how a scale-free epistatic network
topology alters the properties of a fitness landscape in a way
that makes adaptive dynamics on it much more liable to dis-
cover high-fitness optima despite strong epistasis. To the
best of our knowledge, and also to our surprise, this is the
first systematic study of how the standard NK results vary
when a preferential attachment scheme is used for determin-
ing the epistatic linkages between loci.
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