
Group formation and social evolution: a computational model

Nicholas Geard and Seth Bullock

SENSe, School of Electronics and Computer Science, University of Southampton, SO17 1BJ
nlg@ecs.soton.ac.uk

Abstract

The tendency to organise into groups is a fundamental prop-
erty of human nature. Despite this, many models of so-
cial network evolution consider the emergence of community
structure as a side effect of other processes, rather than asa
mechanism driving social evolution. We present a model of
social network evolution in which the group formation pro-
cess forms the basis of the rewiring mechanism. Exploring
the behaviour of our model, we find that rewiring on the ba-
sis of group membership reorganises the network structure in
a way that, while initially facilitating the growth of groups,
ultimately inhibits it.

Introduction
Groups, it has been argued, are a “basic process of social
interaction” (Turner et al., 1987). Individuals rely on groups
to achieve ends they could not achieve alone, and as a means
for defining their personal identity. Groups, meanwhile, ex-
ist only so long as individuals are interested in becoming
members of them. Much attention has recently been devoted
to the task of identifying and understanding groups and com-
munities in social networks.1

In sociology, the significance of groups as an expres-
sion of human social interaction, and their importance as
an object of study, have a long history (Turner et al., 1987;
Wasserman and Faust, 1994). The application of ana-
lytic tools from physics revitalised the study of social sys-
tems from a network perspective (Newman et al., 2002),
and groups were recognised as a significant structural phe-
nomenon, though one not amenable to easy characterisa-
tion (Jin et al., 2001; Davidsen et al., 2002; Girvan and New-
man, 2002).

From a network perspective, a community is a subset of
individuals who have more connections to other individu-

1The terms “group” and “community” are often used inter-
changeably in the literature; in the remainder of this paper, we will
use “group” to refer to a subset of individuals in a population who
each identify as belonging to a particular organisation, and “com-
munity” to refer to the a subset of individuals in the social network
who are more densely linked to each other than to the remainder of
the network.

als within their community than to individuals from out-
side their community. A significant proportion of the lit-
erature on community structure focuses on the challenge of
identifying the presence of communities in large data sets,
such as those obtained from email records, automatic recom-
mendation systems and social networking sites (Fortunato
and Castellano, 2008, provide a recent overview of develop-
ments in this area).

A smaller fraction of the literature is concerned with the
question of how communities arise, and understanding the
social dynamics that influence their formation and evolu-
tion (Jin et al., 2001; Skyrms and Pemantle, 2000; Grönlund
and Holme, 2004; Backstrom et al., 2006). A common fea-
ture of these models is that community structure frequently
emerges as a side effect of another process, such as intro-
ductions between friends, or a desire to differentiate oneself
from a population average.

In many real world contexts however, groups do not ap-
pear passively. Rather, they are the outcome of an active
recruitment process, which arises in response to some per-
ceived need that can best be met by a combined effort (Ol-
son, 1971). For example, companies organise lobby groups
in order to more effectively have their concerns heard by
government, workers form unions to increase their bargain-
ing power in negotiations with employers, and social move-
ments arise to engage in collective action for a variety of
humanitarian, environmental and other causes. We focus
here on individuals and their participation in social move-
ments (McAdam and Paulsen, 1993; Della Porta and Diani,
2005; Hedström, 2006).

Social movements are groups of people who come to-
gether to act collectively in support or opposition of some
political or social issue (Tilly, 1978; Della Porta and Diani,
2005). It is widely accepted that social ties between indi-
viduals are critical to the success of social movements in
recruiting new members (Snow et al., 1980; Marwell et al.,
1988; McAdam and Paulsen, 1993). While some choices of
group affiliation are undoubtedly a product of an individual’s
intrinsic preferences, the affiliations of their social contacts
also exert an influence (Della Porta and Diani, 2005). Prop-
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erties of the social network, such as the number and intensity
of ties between individuals, the existence of central nodes,
and resource heterogeneity are therefore important determi-
nants of how effectively a social movement can grow, and
hence its ability to achieve its aims (Marwell et al., 1988;
Gould, 1993; Kim and Bearman, 1997).

At the same time, an individual’s participation in activ-
ities associated with a particular social movement is likely
to strongly influence the people they meet, and hence on
the set of individuals with whom they may form social
ties (Della Porta and Diani, 2005). Thus, there is a bidirec-
tional relationship between the short term dynamic of group
formation occurring on a social network, and the longer term
dynamic of the evolution of the structure of that social net-
work (Sayama, 2007; Gross and Blasius, 2008).

Existing studies of community structure in networks have
typically focused on exploring how communities can emerge
from individual level rules. The reciprocal influence that
group formation dynamics may have on social network evo-
lution has been hitherto neglected. We are not aware of any
model that explicitly considers group formation as a process
that may actively influence the evolution of social networks.
However, several recent models of opinion formation and
cooperation in networked systems do confront a similar is-
sue with regard to the coevolution of network’s structure and
the dynamic processes occurring on that network (Guimerà
et al., 2005; Holme and Grönlund, 2006; Santos et al., 2006;
Kozma and Barrat, 2008).

Explicitly considering the relationship between group for-
mation and social evolution raises two interesting questions:
how does social network structure influence the effective-
ness of group formation, and how does group formation in-
fluence the evolution of the social network? In this paper, we
propose a simple model of group formation and social net-
work evolution and investigate the extent to which a group
formation process can bring about (or hamper) the emer-
gence of structural conditions contributing to its success;
that is, the speed and size with which a group can recruit
members.

Model Description
We model a social network as a simple graph containingN
vertices representing individuals, andM undirected edges
representing social ties (i.e., each vertex hasK = 2M/N
neighbours on average). Each vertex is associated with a
trait vectora. Each component of this vector is a contin-
uous variable in the range[0, 1] reflecting some aspect of
an individual’s social character (Watts et al., 2002; Bogu˜ná
et al., 2004); for example, their tendency to adopt a liberalor
conservative stance on a particular social or political issue.
Two individuals with similar values in a particular compo-
nent of their trait vector will tend to share similar opinions
on a particular issue. Viewed together, the totality of an indi-
vidual’s views describes a vector in an abstract social space.

The social distance between two individualsx andy may
then be calculated either in terms of the Euclidean distance
between the vectorsax anday, or, with respect to issuen,
the absolute difference betweenaxn andayn, whereaxn is
thenth component ofax.

Our model is updated on two distinct time scales: a short
time scale corresponding to group formation, and a longer
time scale corresponding to social evolution, in which each
step represents a complete iteration of the group formation
process.

Group formation phase: The group formation process
follows the following sequence of steps:

1. G individuals are picked uniformly at random to seedG
different groups. These individuals are added to a set of
activeindividuals,A.

2. A single individualix is randomly chosen fromA. This
individual issues invitations to all of their network neigh-
bours who are not currently affiliated with any group to
join their group. The individualix is then removed from
A.

3. Each individualiy who receives an invitation accepts it
with a probability equal toα(1 − |axn − ayn|), where
α is a model parameter governing the base probability of
acceptance, andn is the index of the group to whichix
belongs. Therefore, if thenth component of trait vectors
associated withix and iy are identical, the distance be-
tween them will be zero, and the probability of acceptance
will be α. As the difference between traits increases, the
probability of acceptance decreases linearly.

4. Individuals who accept invitations are added toA.

5. Steps 2–4 are repeated until there are no individuals re-
maining inA.

At this point, the network can be in one of two states: ei-
ther all individuals are members of a group, or the group
formation process has died out before spreading through the
entire network because all individuals on the periphery of a
group have had their initiations to join refused. The proba-
bility of this occurring will depend on the value ofα and
structural features of the network, such as the density of
edges (Figure 1). In order to ensure some variability that can
be ascribed to network structure, we typically chose values
of K andα that placed the initial network in the boundary
region of Figure 1, where the group formation process was
able to spread some distance beyond the seed individual, but
did not percolate across the entire network.

Social update phase: After group formation has con-
cluded, individuals who have joined a group adjust their
social ties. We assume that being a member of a group
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Figure 1: Proportion of network (N = 2, 000; G = 1) be-
coming members of a group (black = 0%; white = 100%) for
a range of values ofα andK. Each parameter combination
was repeated 200 times with randomly chosen seeds and the
final group sizes were averaged. For low values ofK and/or
α, groups rarely grow beyond a few members. When bothK
andα are high, all individuals in the network join the group.

entails involvement in group-related activities that willre-
sult in an individual spending more time with members of
their group (irrespective of whether they were previously
known to them) and hence, given finite time, less time with
current acquaintances who are not members of their group.
We make the further assumption that individuals involved in
groups are likely to update thier social neighbourhoods more
frequently than unaffiliated individuals.

Each individual who is a member of a group therefore
drops the edge connecting them to their least similar neigh-
bour (irrespective of whether that neighbour is in their group
or not) and creates a new edge connecting them to the mem-
ber of their group, who is not currently a neighbour, to whom
they are most similar. Similarity is again measured as the
difference between thenth component of the respective trait
vectors (i.e., that corresponding to the group of which they
are members).

After the social update phase has occurred, all groups are
cleared, and the next iteration of the group formation phase
begins on the new social network, with a new set of ran-
domly chosen group seeds. Social movements often form
in response to a particular issue, and either break apart or
evolve into a new form as that issue becomes less rele-
vant (Della Porta and Diani, 2005; Fuchs, 2006). Our de-
cision to break apart all groups between each iteration of
group formation is clearly a coarse approximation of this
situation, but was chosen for initial simplicity.

Model Behaviour
To begin, we consider an initially random network with
N = 2, 000 andK = 6 in which only one group is formed
during each iteration (G = 1) and trait values are drawn at
random from a uniform distribution. In the simulations de-
scribed here, these edges are initially randomly distributed
between vertices following the Er̈dos-Rényi random graph
model; however, other initial configurations are possible.
This section describes the behaviour in an individual sim-
ulation run in detail, before exploring the sensitivity of this
behaviour toK, α and the initial network structure.

The behaviour we are interested in observing is how the
size of groups formed changes as the social network evolves.
The size of the group formed depends not only on the global
structure of the network, but also on the local neighbour-
hood of the seed individual. To obtain an indication of the
general propensity of a particular network structure to facil-
itate group formation, we measure the average size of the
group formed across fifty random seedings, with groups be-
ing erased after each. The social update phase is then carried
out based on the group formed from the final of these seed-
ings.

The structure of the social network passes through three
distinct periods of evolution (Figures 2 and 3). Initially,
the network is well connected but disordered (Figure 2, top
panel), and the mean trait difference between neighbours
is high (0.329). As a consequence, invitations have a low
probability of being accepted and the resulting groups are
small (12.42 members—0.62% of the population—on aver-
age over the first 10 iterations of the simulation). Mean clus-
tering coefficient and path length both remain low (approxi-
mately 0.04 and 7.2 respectively), as is typical of a random
graph.

However, the groups that do form enable their local re-
gions of the network to become more ordered, by allowing
individuals with similar trait vectors to increase the density
of their interconnections, (Figure 2, middle panel). By do-
ing so, they increase the probability of future invitationsbe-
tween individuals in this region being accepted and so assist
the formation of groups in subsequent iterations.

Surprisingly, rather than produce a steady increase in the
average size of groups as the social network becomes more
ordered, a phase transition occurs at the point where a large
proportion of the network simultaneously becomes well or-
ganised (Figure 2). Mean group size increases dramatically,
peaking at 438.12 members (21.9% of the population) in it-
eration 75 (Figure 3). Mean clustering coefficient increases
by an order of magnitude to approximately 0.5 by iteration
80, while mean path length remains relatively low and the
degree distribution becomes more skewed, properties indica-
tive of small world structure.

A side effect of larger groups forming is that the rate of
network reorganisation increases (as each individual who is
in a group updates one of their social ties). Furthermore,
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Figure 2: Network structure observed at different points in
evolution: (a) the initial random network, with trait values
dispersed throughout; (b) the network at the point of phase
transition, when group formation spreads rapidly between
neighbours with similar trait values; and (c) the network at
the end of a run, with individuals clustered into weakly con-
nected communities. Note that smaller networks (N = 500)
are shown for clarity; however, their qualitative featuresare
otherwise similar.

Figure 3: A representative run of the model initialised witha
random network (N = 2000, K = 6, α = 0.25). Each sym-
bol represents the mean group size observed over 20 random
seedings (as described in the text), together with a moving
average calculated over 10 iterations (gray line) and mean
trait difference between neighbouring nodes (black line).
The three networks in Figure 2 correspond to networks ob-
served prior to, during, and after, the spike in mean group
size.

each individual is now able to select their new neighbour
from a wider pool of potential candidates (their fellow group
members). The mean trait difference between neighbours
drops (to 0.049, Figure 3) and the network begins to partition
into a number of weakly connected communities (Figure 2,
bottom panel, and Figure 3). Around iteration 90, mean path
length begins to increase steadily, reaching approximately
14 by iteration 200.

In the extreme case, the network may disintegrate com-
pletely into a set of disconnected components; however, this
is not required in order for group size to fall: by iteration
200, 94.4% of individuals still belonged to a single con-
nected component. The appearance of community structure
sufficient to hamper the formation of groups by creating bot-
tlenecks that impede the spread of invitations. If there is only
a single link between two communities, then, even if it is be-
tween two very similar individuals, group membership has a
chance of spreading at best equal toα.

This social evolution dynamic was observed across a
range of parameter settings, with the primary differences be-
ing the time required for the network to organise, and the
maximum size to which groups are able to grow (Figures 4
and 5). AsK and/orα increase, the size of groups that form
throughout each simulation run also increases, in line with
the trend illustrated in Figure 1. For all combinations ofK
andα, the peak group size achieved is substantially greater
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Figure 4: Peak (filled) and average (hollow) group sizes for
various values ofα and K (diamond: 2; circle: 4; trian-
gle: 6; square: 8). Note that the Y-axis is log-scaled. Other
model parameters:N = 2, 000; G = 1. Each data point is
averaged over 20 runs. The peak group size is that obtained
during the phase transition in network structure. Average
group size is that resulting after the phase transition has oc-
curred.

than the average. Furthermore, increasingK andα results in
the peak group size being obtained earlier in the simulation
run.

We investigated the effect of the initial network configu-
ration (Figure 6) on social evolution by varying the rewiring
probabilityp used to create the initial network. In compar-
ison to random graphs (p = 1.0), regular lattices (p = 0.0)
with comparableN andM take considerably longer to or-
ganise and, at their peak, result in smaller groups. In many
simulation runs (such as that shown in Figure 6), no peak
phase occurs, and the network transitions directly to the dis-
joint community phase. Small world networks (p = 0.05)
organise more slowly than random graphs, but otherwise be-
have similarly, and the occurrence of a peak phase is more
reliable than in lattices.

We have also carried out preliminary investigations into
the behaviour of the model when there is more than one
group forming in each iteration (G > 1). In this case, com-
petition between groups appears to lead to a “rich get richer”
process, whereby large groups tend to increase in size, at the
expense of smaller groups. The mechanism responsible for
this is straightforward: once one group begins to increase
in size with respect to the others, its members dominate the
set of active individuals (A), and hence benefit from more
frequent opportunities to recruit unaffiliated individuals.

Figure 5: Mean group size trends for various values of K
(top) andα (bottom). For clarity, a moving average over 5
iterations is shown, rather than individual data points. Note
that both axes are log-scaled. Increasing either the den-
sity of connections (K) or the base probability of invita-
tions being accepted (α) increases both the speed with which
the network organises, and the peak group size that can be
achieved.

Discussion
How can we interpret the pattern of social evolution ob-
served in our model? As communities begin to emerge, the
ability of groups to recruit large numbers of people initially
improves. However, as these communities become stronger,
they also become more homogeneous and detached from the
wider social context in which they exist. This social isola-
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Figure 6: Mean group size trends for various initial network
configurations (rewiring probabilities,p = 0, 0.05 and1).
For clarity, a moving average over 5 iterations is shown,
rather than individual data points. Note that both axes are
log-scaled. See text for discussion of trends.

tion severely limits the ability of groups to recruit new mem-
bers and hence, potentially, to achieve their aims in an effec-
tive fashion (Snow et al., 1980). Networks with a higher
density of social ties are more rapidly reorganised to facil-
itate, and later inhibit, group formation. Similarly, popula-
tions in which people have a strong predisposition toward
joining groups reorganise more rapidly.

There is general evidence that segregation of social net-
works can arise despite the absence of any explicit prefer-
ence for such an outcome (Schelling, 1971). Even when
interaction structures are externally imposed, such as the
hierarchical reporting relationships of a large organisation,
there is evidence to suggest that the existence of communi-
ties can have a negative effect on global integration (Kilduff
and Tsai, 2003). In the context of organisations, such an ef-
fect has led to the value placed uponbridges—individuals
who fill structural holes in a network by linking otherwise
disconnected components. Individuals in such positions of-
ten gain social capital from the role they play in mediating
between different interest groups (Burt, 2002).

Social movements, too, can benefit from being linked
together. Della Porta and Diani (2005) summarise exten-
sive evidence suggesting that linkages between social move-
ments allow sharing of information and resources, and facil-
itate cooperation and coordination of the aims of different
movements. A key factor in linking movements is over-
lapping memberships—the existence of individuals who are
members of two or more groups (Palla et al., 2005). This
suggests that our assumption of exclusive group member-

ship will require reevaluation. One promising direction for
future work is to allow individuals to belong to multiple
groups at the same time, and to explore the extent to which
this enables the social network to organise in such a way that
it facilitates the formation of groups without disintegrating
into weakly connected components.

In summary, this paper has presented a novel model of
group formation and social evolution that takes as its start-
ing point two main ideas: first, that group formation is a
process in which individuals actively seek to engage, and
second, that this tendency has repercussions for the evolu-
tion of social network structure. The investigations reported
here indicate that rewiring on the basis of group member-
ship reorganises the network structure in a way that, while it
initially benefits the growth of groups, ultimately inhibits it.

It is worth noting that, in order to remain as simple as
possible, the model described here makes several assump-
tions that may limit its general applicability. For example,
an individual’s decision to join a particular group is based
purely upon their similarity with the individual who has in-
vited them, and does not take into account factors such as
the alignment of their values with those of the group, or the
opinions of their social neighbours (McAdam and Paulsen,
1993). Group membership is exclusive; that is, it is not pos-
sible for an individual to simultaneously be a member of
more than one group which, as discussed above, is likely to
be play a role in ensuring social cohesion (Della Porta and
Diani, 2005; Palla et al., 2005). Despite these limitations
of the model in its current formulation, we believe it to be
a fruitful starting point for further exploration into the the
co-evolution of topology and dynamics in social networks.
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