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Abstract

This paper proposes a novel solution to spam detection in-
spired by a model of the adaptive immune system known as
the cross-regulation model. We report on the testing of a pre-
liminary algorithm on six e-mail corpora. We also compare
our results with those obtained by the Naive Bayes classifier
and another binary classification method we developed previ-
ously for biomedical text-mining applications. We obtained
very encouraging results which can be further improved with
development of this bio-inspired model. We show that the
cross-regulation model is promising as a bio-inspired algo-
rithm for spam detection in particular, and binary classifica-
tion in general. Finally, we also present evidence that our
bio-inspired model is relevant for understanding immune reg-
ulation itself.

Introduction
Spam detection is a binary classification problem in which
e-mail is classified as either ham (legitimate e-mail) or spam
(illegitimate or fraudulent e-mail). Spam is very dynamic
in terms of advertising new products and finding new ways
to defeat anti-spam filters. The challenge in spam detec-
tion is to find the appropriate threshold between ham and
spam leading to the smallest number of misclassifications,
especially of legitimate e-mail (false negatives). To avoid
confusions, ham and spam will be labeled as positives and
negatives respectively.

The vertebrate adaptive immune system, which is one of
the most complex and intelligent biological systems, learns
to distinguish harmless from harmful substances (known
as pathogens) such as viruses and bacteria that intrude the
body. These pathogens often evolve new mechanisms to
attack the body and its immune system, which in turn
adapts and evolves to deal with changes in the repertoire of
pathogen attacks. A weakly responsive immune system is
vulnerable to attacks while an aggressive one can be harmful
to the organism itself, causing autoimmunity. Given the con-
ceptual similarity between the problems of spam and immu-
nity, we investigate the applicability of the cross-regulation
model of T-cell dynamics (Carneiro et al., 2007) to spam
detection.

Below we offer a short review of related work in spam de-
tection, a brief introduction to the adaptive immune system,
and the cross-regulation model (Carneiro et al., 2007). In
the following section, the bio-inspired cross-regulation al-
gorithm and its application to spam are discussed. In the
Results section, the experiments and implementation of the
model vis a vis the other binary classification models are
discussed.

Spam Detection

Spam detection has recently become an important problem
with the ubiquity of e-mail and the rewards of no-cost adver-
tisement that can reach the largest audience possible. Spam
detection can target e-mail headers (e.g. sender, receiver, re-
lay servers...) and/or content (e.g. subject, body). Machine
learning techniques such as support vector machines (Car-
reras and Marquez, 2001; Kolcz and Alspector, 2001), Naive
Bayes classifiers (Sahami et al., 1998; Metsis et al., 2006)
and other classification rules such as Case-Based Reason-
ing (Fdez-Riverola et al., 2007) have been very successful
in detecting spam in the past. However, they generally lack
the ability to detect spam drift since they rely on training on
fixed corpora, features and rules. Research in this area is
now focusing on concept drift in spam, with very promising
results (Delany et al., 2006a; Méndez et al., 2006; Tsymbal,
2004; Kolter and Maloof, 2003). In addition, social-based
spam detection models (Boykin and Roychowdhury, 2005;
Chirita et al., 2005) have recently become relevant and com-
petitive. Artificial Immune System (AIS) based algorithms
(Oda, 2005; Bezerra and Barra, 2006; Yue et al., 2007) are
another area of exciting development. The AIS models are
inspired by diverse responses and theories of the natural im-
mune system (Hofmeyr, 2001) such as negative selection,
clonal selection, danger theory and the immune network the-
ory. Our bio-inspired spam detection algorithm is based in-
stead on the cross-regulation model (Carneiro et al., 2007),
which is a novel development in AIS approaches to spam
detection.
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The Adaptive Immune System
The immune system, and more specifically, the vertebrate
adaptive immune system, is a complex network of cells
that distinguish between harmless and harmful substances
or antigens—usually proteins or fragments of proteins and
certain types of carbohydrate polymers that can be recog-
nized by the immune system. When harmful antigens are
discovered, an immune response to eliminate them is set in
motion. Recognizing harmless self antigens, which obvi-
ously should not lead to an immune response to eliminate
them, is resolved by a process known as positive and nega-
tive selection of T-cells which takes place in the thymus. It
is in the thymus that T-cells develop and mature; only T-cells
that have failed to bind to self antigens are released, while
the rest of the T-cells is culled. The mature T-cells are al-
lowed out of the thymus to detect harmful nonself antigens.
They do this by binding to antigen presenting cells (typi-
cally B-cells, macrophages and dendritic cells) that collect
and present antigens through MHC complexes after break-
ing them by lysosome. The specific T-cells that are able
to bind to the presented antigens then stimulate B-cells that
start a cascade of events leading to antibody production and
the destruction of the pathogens or tumors linked to the anti-
gens. However, it is possible that T-cells and B-cells, which
are also trained in the thymus, could mature before being
exposed to all self antigens. Even more problematic is the
somatic hypermutation that ensues in lymph nodes after the
activation of B-cells. At this stage, it is possible to generate
many mutated B-Cell clones that could bind to harmless self
antigens. Either situation can cause auto-immunity by gen-
erating T-cells capable of attacking self antigens. One way
around this is by a process called costimulation which in-
volves the co-verification of self antigens by both T-cells and
B-cells before the antigen is identified as harmful pathogen
and attacked. To further insure that the T-cells do not attack
self, another type of T-cells known as T regulatory cells, are
formed in the thymus where they mature to avoid recogniz-
ing self antigens. These regulatory T-cells have the respon-
sibility of preventing autoimmunity by suppressing other T-
cells that might bind and kill self antigens.

The Cross-regulation Model
The cross-regulation model, proposed by Carneiro et al.
(2007), aims to model the process of discriminating be-
tween harmless and harmful antigen—typically harmless
self/nonself and harmful nonself. The model consists of only
three cell types: Effector T-Cells (E), Regulatory T-Cells (R)
and Antigen Presenting Cells (A) whose populations interact
dynamically, ultimately to detect harmful antigens. E and R
are constantly produced, while A are capable of presenting
a collection of antigens to the E and R. T-cell proliferation
depends on the co-localization of E and R as they form con-
jugates (bind) with the antigens presented by A cells (this
model assumes that A can form conjugates with a maximum

of two E or R). The population dynamics rules of this model
are defined by three differential equations, which can be, for
every antigen being presented by an A, summarized by the
following three laws of interaction:

1. When E bind to the A, they proliferate with a fixed rate.

2. When R bind to the A, they remain in the population.

3. if an R binds together with an E to the same A, the R
proliferates with a certain rate and the E remains in the
population but does not proliferate.

The E and R proliferation rates in this model are fixed to
200%, which is the exactly the process of duplication or pro-
duction of one extra copy. Finally, the E and R die at a fixed
death rate. Carneiro et al. (2007) showed that the dynamics
of this system leads to a bistable system of two possible sta-
ble population concentration attractors: (i) the co-existence
of both E and R types identifying harmless self antigens, or
(ii) the progressive disappearance of R, identifying harmful
antigens. An illustration of the three rules is shown in figure
1 and more details on the model are available in the original
paper (Carneiro et al., 2007).

Figure 1: Figure is courtesy of Carneiro et al. (2007). The Cross-
regulation Model. The diagram illustrates the interactions underly-
ing the dynamics of A, E and R as assumed in the model in which
A can only form conjugates with a maximum of two T cells.

The Cross-regulation Spam Algorithm
In order to adopt the cross-regulation algorithm for spam
detection, which we named the Immune Cross-Regulation
Model (ICRM), one has to think of e-mails as analogous to
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the organic substances that upon entering the body are bro-
ken into constituent pieces by lysosome in A. In biology,
these pieces are antigens (typically protein fragments) and
in our analogous algorithm they are words extracted from e-
mail messages and processed to become features1. Thus, in
this model, antigens are words or potentially other features.
For every antigen there exists a number of virtual E and R
that interact with A which present a sample of the features
of a given e-mail message. In other words, the A correspond
to the e-mail. The general ICRM algorithm is designed to
be first trained on N e-mails of “self” (a user’s outbox) and
harmless “nonself” (a user’s inbox). However, in the results
described here, it was not possible to directly obtain outbox
data; we are currently working on collecting outbox data
for future work. In addition, the ICRM is also trained on
“harmful nonself” (spam arriving to a given user). Training
on or exposure to ham e-mails, in analogy with Carneiro’s
et al model (Carneiro et al., 2007), is supposed to lead to a
“healthy” dynamics denoted by the co-existence of both E
and R with more of the latter. In contrast, training on or ex-
posure to spam e-mails is supposed to result in much higher
numbers of E than R. When e-mail features occur for the first
time, a fixed initial number of E and R, for every feature, are
generated. These initial values of E and R are different in
the training and testing stages; more weight to R for ham
features, and more weight to E for spam features is given in
the labeled training stage. While we specify different values
for initializing the proportions of E and R associated with e-
mail features, depending on whether the algorithm is in the
training or the testing stage, the ICRM is based on the exact
same algorithm in both stages. An illustration comparing
the artificial model to the biological one is shown in figure
2. The ICRM algorithm begins when an e-mail is received
and cycles through three phases for every received e-mail:

In the pre-processing phase, HTML tags are not stripped
off and are treated as other words, as often done in spam-
detection (Metsis et al., 2006) . All words constituting
the e-mail subject and body are lowercased and stemmed
using Porter’s algorithm (Porter, 1980) after filtering out
common English stop words and words of length less than
3 characters. A maximum of n processed unique features
(words, in this case) are randomly sampled and presented
by the virtual A which corresponds to the e-mail. These
virtual antigen presenting cells have nA binding slots per
feature, i.e. n× nA slots per e-mail message. The break-
ing up of the e-mail message into constituent portions
(features) is inspired by the natural process in Biology,
but is further enhanced in this model to select the first and
last n

2 features in the e-mail. The assumption is that the
most indicative information is in the beginning (e.g. sub-
ject) and the end of the e-mail (e.g. signature), especially

1Naturally, features other than words are possible (e.g. bigrams,
e-mail titles)

Figure 2: An illustration of the cross-regulation model (and its
mapping to spam detection). In step 1, the intruder (received e-
mail) is engulfed by an A (e-mail representer array). In step 2, the
intruder is broken down by lysosome (preprocessor which strips
html tags, filters out stop words and short words and porter stems
a selection words) into antigens (features) which are then sampled
and presented through MHC (an array residing in the memory) so
that in step 3 specific E or R T-cells (virtual E and R residing in
memory) can recognize it and bind to it. In step 3a, an R recogniz-
ing what probably is a self-antigen (ham feature) shares the A with
an E recognizing a probably nonself-antigen (new or spam feature).
In step 4a, the R suppresses the E which then excites the R to make
it proliferate with a higher rate giving the antigen recognized by
E more tolerance (making the novel feature more ham since it co-
occurred with a ham feature). In step 3b on the other hand, the E is
not suppressed by any R and thus it proliferates in step 4b making
the system more immune to the antigen recognized by E (making
the feature E recognize one more spam feature). After step 4, the
whole intruder (e-mail) is judged based on its antigens (features)
on whether it is bad or good (spam or ham) as explained in the
decision phase of the algorithm.

concerning ham e-mails. Nevertheless, the feature selec-
tion problem will be studied in more detail in future work.

In the interaction phase, feature-specific Rg and Ef are
allowed to bind to the corresponding antigens presented
by A, which are arbitrarily located on its array of feature
slots. Every adjacent pair of A slots is dealt with sepa-
rately: the Ef for a given feature f proliferate only if they
do not find themselves sharing the same adjacent pair of
A binding slots with Rg , in which case only the Rg , asso-
ciated with feature g, proliferate. The model assumes that
novel ham features k tend to have their Ek suppressed by
Rg of other pre-occurring ham features g because they
tend to co-occur in the same message. As for the algo-
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rithm’s parameters, let nA be the number of A slots per
feature. Let (E0ham

, R0ham
) and (E0spam , R0spam ) be

the initial values of E and R for features occurring for
the first time in the training stage for spam and ham re-
spectively. For the testing stage we have (E0test

, R0test
).

Moreover, E0ham
<< R0ham

, E0spam > R0spam and
E0test > R0test . Therefore, a feature f initially occurring
in a ham e-mail would have Rf >> Ef and vice versa
for spam. In the ICRM implementation hereby presented,
a major difference form Carneiro’s et al model (Carneiro
et al., 2007) was tried: the elimination of cell death. This
is a rough attempt to provide the system with long term
memory. Cell death can lead to the forgetfulness of spam
or ham features if these features do not reoccur in a certain
period of time as shown later on.

In the decision phase, the arriving e-mail is assessed based
on the relative proportions of R and E for its n sampled
features. Features with more R are assumed to correspond
to ham while features with more E are more likely to cor-
respond to spam. The proportions are then normalized to
avoid decisions based on a few highly frequent features
that could occur in both ham and spam classes. For every
feature f , the feature score is computed as follows:

scoref =
Rf − Ef√
R2

f + E2
f

, (1)

indicating an unhealthy (spam) feature when scoref ≤ 0
and a healthy (ham) one otherwise. scoref varies be-
tween -1 and 1. For every e-mail message e, the e-mail
immunity score is simply:

scoree =
∑
∀f∈e

scoref . (2)

Note that a spam e-mail with no text such as as the cases
of messages containing exclusively image and pdf files,
which surpass many spam filters, would be classified as
spam in this scheme—e-mail e is considered spam if
scoree = 0. Similarly, e-mails with only a few features
occurring for the first time, would share the same destiny,
since the initial E is greater than R in the testing stage
E0test

> R0test
which would result in scoree < 0.

Results
E-mail Data
Given the assumption that personal e-mails (i.e. e-mails sent
or received by one specific user) are more representative of a
writing style, signature and themes, it would be preferable to
test the ICRM on e-mails from a personal mailbox. Unfortu-
nately, this is not offered by the most common spam corpus

of spamassasin2 and similarly for ling-spam3. In addition,
the ICRM algorithm requires timestamped e-mails, since or-
der of arrival affects final E/R populations. Timestamped
data is also important for analyzing concept drifts over time,
thus we cannot use the PU14 data described by Androut-
sopoulos et al. (2000b) . Delany’s spam drift dataset5, in-
troduced by Delany et al. (2005), meets the requirements
in terms of timestamped and personal ham and spam how-
ever its features are hashed and therefore it is not easy to
make tangible conclusions based on their semantics. The
enron-spam6 preprocessed data perfectly meets the require-
ments as it has six personal mailboxes made public after the
enron scandal. The ham mailboxes belong to the employ-
ees farmer-d, kaminski-v, kitchen-l, williams-w3, beck-s and
lokay-m. Combinations of five spam datasets were added
to the ham data from spamassassin (s), HoneyProject (h),
Bruce Guenter (b) and Georgios Paliousras’ (g) spam cor-
pora and then all six datasets were tokenized (Metsis et al.,
2006). In practice, some spam e-mails are personalized,
which unfortunately cannot be captured in this dataset since
the spam data comes from different sources. Only the first
1000 ham and 1000 spam e-mails of each of the corpora are
used, as shown in table 1.

Table 1: Enron datasets
Dataset ham + spam ham:spam [ham, spam] time range
Enron1 farmer-d + gp 1000:1000 [12/99, 06/00], [12/03, 01/05]
Enron2 kaminski-v + sh 1000:1000 [12/99, 05/00], [05/01, 07/05]
Enron3 kitchen-l + bg 1000:1000 [2/01, 06/01], [08/04, 03/05]
Enron4 williams-w3 + gp 1000:1000 [4/01, 01/02], [12/03, 06/04]
Enron5 beck-s + sh 1000:1000 [1/00, 11/00], [05/01, 03/05]
Enron6 lokay-m + bg 1000:1000 [6/00, 7/01], [08/04, 10/04]

ICRM Settings and Parameters
For each of the six enron sets, we ran each algorithm 10
times. Each run consisted of 200 training (50% spam) and
200 testing or validation (50% spam) e-mails that follow in
timestamp order. From the 10 runs we computed variation
statistics for the F-score7, and Accuracy performance.

In the e-mail pre-processing phase, we used n = 50,
nA = 10, E0ham

= 6, R0ham
= 12, E0spam = 6,

R0spam
= 5, E0test

= 6 and R0test
= 5. These initial E

2http://spamassassin.apache.org/publiccorpus/
3http://www.aueb.gr/users/ion/publications.html
4http://www.iit.demokritos.gr/skel/i-config/downloads/enron-

spam/
5http://www.comp.dit.ie/sjdelany/Dataset.htm
6http://www.iit.demokritos.gr/ ionandr/publications/
7The F1-measure (or F-Score) is defined as F =

2·Precision·Recall
Precision+Recall

, where Precision = TP
(TP+FP )

and Recall =
TP

(TP+FN)
and Accuracy = (TP+TN)

(TP+TN+FP+FN)
measures of the

classification of each test set, where TP, TN, FP and FN denote true
positives, true negatives, false positive and false negatives respec-
tively (Feldman and Sanger, 2006)
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and R populations for features occurring for the first time are
chosen based on the initial ratios chosen by Carneiro et al.
(2007) and were then empirically adjusted to achieve the
best F-score and Accuracy results for the six enron datasets.
Finally, the randomization seed was fixed in order to com-
pare results to other algorithms and search for better param-
eters. The ICRM was compared with two other algorithms
that are explained in the following two subsections. The
ICRM was also tested on shuffled (not in order of date re-
ceived) validation sets to study the importance of e-mail re-
ception order. The results are shown in table 2. The mean
and variance of the results are also plotted on the F-score vs
Accuracy axes as shown in figure 3.

Naive Bayes
We have chosen to compare our results with the multino-
mial Naive Bayes (NB) with boolean attributes (Jensen et al.,
1996) which has shown great success in a previous research
(Metsis et al., 2006). In order to fairly compare NB with
ICRM, we selected the first and last unique n = 50 features.
The Naive Bayes classifies an e-mail as spam in the testing
stage if it satisfies the following condition:

p(cspam).
∏

f∈e−mail
p(f |cspam)

p(cspam).
∑

c∈{cspam,cham}

∏
f∈e−mail

p(f |c)
> 0.5, (3)

where f is the feature sampled from an e-mail, and
p(f |cspam) and p(f |cham) are the probabilities that this fea-
ture f is sampled from a spam and ham e-mail respectively,
while c is the union of spam and ham emails. The results are
shown in table 2 and plotted in figure 3.

Variable Trigonometric Threshold (VTT)
We developed the VTT as a binary classification algorithm
and implemented it as a protein-protein abstract classifi-
cation tool8 using bioliterature mining (Abi-Haidar et al.,
2007, 2008). VTT is itself inspired by another case-
based spam detection algorithm (Fdez-Riverola et al., 2007).
Briefly, VTT’s strategy is to make a selection of most sig-
nificant preprocessed words ranked by a score S(w) =
|pham(w) − pspam(w)| where pham(w) and pspam(w) are
the probabilities of a word w of occurring in the ham and
spam training datasets which in our case are batches of 200
e-mails each. Naturally, a selection of 650 words would be
fairly sufficient. The e-mails are then reduced to vectors
of these 650 words. Then, the probabilities of co-occurring
pairs of words (wi, wj) in these vectors are computed using
pham(wi, wj) and pspam(wi, wj). Then the trigonometric
measures of the angle α, of this vector with the pham axis:
cos(α) is a measure of how strongly terms are exclusively
associated with training ham e-mails, and similarly sin(α)

8The Protein Interaction Abstract Relevance Evaluator (VTT)
tool is available at http://casci.informatics.indiana.edu/VTT/

with training spam ones. Then, for every e-mail e, we com-
pute the sum of all pairs’ measures to study the e-mail e’s
likelihood of being ham or positive P (e) and spam or nega-
tive N(e):

P (e) =
∑

(wi,wj)∈e

cos(α(wi, wj)), (4)

N(e) =
∑

(wi,wj)∈e

sin(α(wi, wj)) (5)

and finally the decision of whether an e-mail is ham or
spam is made using the VTT equation:{

e ∈ ham, if P (e)
N(e) ≥ λ0 + β−np(a)

β

e ∈ spam, otherwise
(6)

where λ0 is a constant threshold for deciding whether an e-
mail is positive (spam) or negative (ham) obtained through
exhaustive parameter search. For this experiment λ0 = 1.3
produces the best results. Another parameter is β which
was used in the abstract classification experiment to regulate
np(a) which counts the number of tagged protein in an ab-
stract a but will be ignored in spam detection for the sake of
simplicity. Therefore, equation 6 can be reduced to classify
e as ham if P (e)

N(e) ≥ 1.3 or as spam otherwise. The results
are shown in table 2 and plotted in figure 3 then discussed in
the discussion section.

Table 2: F-score and Accuracy mean +/- sdev of 10 runs for 50%
spam enron data sets with the first two columns using ICRM (the
first one applied on ordered e-mail, the second one on shuffled
timestamps of testing data, and the last two using Naive Bayes and
VTT.

ICRM Other Algorithms
Dataset Ordered Shuffled Naive Bayes VTT

Enron1 F-score 0.9 ± 0.03 0.9 ± 0.03 0.89 ± 0.04 0.91 ± 0.04
Accuracy 0.9 ± 0.03 0.9 ± 0.03 0.87 ± 0.05 0.9 ± 0.04

Enron2 F-score 0.86 ± 0.06 0.85 ± 0.06 0.92 ± 0.07 0.82 ± 0.23
Accuracy 0.85 ± 0.06 0.83 ± 0.07 0.93 ± 0.05 0.86 ± 0.13

Enron3 F-score 0.88 ± 0.04 0.88 ± 0.04 0.93 ± 0.03 0.86 ± 0.08
Accuracy 0.87 ± 0.05 0.87 ± 0.05 0.92 ± 0.04 0.85 ± 0.07

Enron4 F-score 0.92 ± 0.05 0.92 ± 0.04 0.92 ± 0.05 0.95 ± 0.03
Accuracy 0.92 ± 0.05 0.92 ± 0.05 0.91 ± 0.06 0.95 ± 0.03

Enron5 F-score 0.92 ± 0.03 0.87 ± 0.06 0.94 ± 0.04 0.84 ± 0.13
Accuracy 0.91 ± 0.03 0.87 ± 0.05 0.95 ± 0.03 0.87 ± 0.09

Enron6 F-score 0.89 ± 0.04 0.9 ± 0.04 0.91 ± 0.02 0.88 ± 0.05
Accuracy 0.88 ± 0.05 0.89 ± 0.05 0.9 ± 0.03 0.87 ± 0.07

Total F-score 0.9 ± 0.05 0.89 ± 0.05 0.92 ± 0.04 0.88 ± 0.12
Accuracy 0.89 ± 0.05 0.88 ± 0.06 0.91 ± 0.05 0.88 ± 0.08

Discussion
As clearly shown in table 2 and figure 3, ICRM, NB and
VTT are very competitive for most enron datasets, indeed
the performance of ICRM is statistically indistinguishable
from VTT (F-score and Accuracy p-values 0.15 and 0.63
for the paired t-test validating the null hypothesis of vari-
ation equivalence), though its slightly lower performance

Artificial Life XI 2008  5 



Figure 3: F-score vs Accuracy (mean and standard deviation) plot
comparison between ICRM (vertical blue), NB (horizontal red) and
VTT (diagonal green) for each of the six enron datasets. A visual-
ization of table 2.

against NB is statistically significant (F-score and Accuracy
p-values 0.01 and 0.02 for the paired t-test, rejecting the null
hypothesis of variation equivalence with 0.05 level of signif-
icance).

More particularly, we investigate VTT’s performance de-
viations between enron 2 and enron 4 and notice that the
average number of top 650 features that are ham features
is only 10.22 for enron 2 (having many spam and very few
ham indicative features) while it is 75.02 for enron 4 (having
relatively more ham and less spam indicative features) this
giving us the maximum deviations off 43.40, which is the
mean of ham features’ constituency of the top 650 features
for all enron sets. Enron 4’s Inbox (williams-w3), contained
619 automatically generated notification e-mails of the exact
same contents with a subtle variation in the filename id, as
shown via Enron Explorer9, an online visualization tool of
the publicly available enron data. The peculiarity of enron
4 is also manifested in Metsis’ Naive Bayes results (Metsis
et al., 2006). We think that the huge proportion of spam in-
dicative features for enron 2 (similarly but less so for enron
5) is due to the huge spam drift and diversity of spamassassin
and HoneyProject spanning four years mostly in 2001, 2002

9http://enron.trampolinesystems.com/focus/338815

and 2005 which is not available in the barely six months
lifespan of ham. This diversity gives VTT many highly in-
dicative spam features that only occur in spam and much
less, if at all, in ham. This leads to many ham misclassifi-
cations for the few indicative features (out of 650) that are
selected for the training. A fix to this could be by either by
increasing the threshold beyond 650 features or balancing
the number of top 650 indicative ham and spam features as
clearly is the case for enron 4, or by finding a synchronous
spam and ham data. VTT’s disadvantage of the features
selection is paid off by its advantage of using feature co-
occurrence of the top 650 features which is not the case in
any of ICRM and NB. This might not be a fair comparison
yet a modification to VTT would result in a modified VTT
for another project and similarly, the use of co-occurrences
with ICRM and NB will be pursued for a more advanced
ICRM. From here onwards, we proceed with the compari-
son between ICRM and NB only.

Table 3: ICRM vs NB F-score and Accuracy mean +/- sdev for
spam to ham ratio variations for mean of the six enron datasets.

50% spam 30% spam 70% spam

ICRM F-score 0.9 ± 0.05 0.91 ± 0.03 0.79 ± 0.12
Accuracy 0.89 ± 0.05 0.86 ± 0.05 0.83 ± 0.08

NB F-score 0.92 ± 0.04 0.86 ± 0.07 0.79 ± 0.07
Accuracy 0.91 ± 0.05 0.84 ± 0.07 0.74 ± 0.01

Figure 4: F-score vs Accuracy plot comparison between ICRM
(vertical blue) and NB (horizontal red) with different spam to
ham ratio variations 30:70 (spam30), 70:30 (spam70) and 50:50
(spam50) for the mean of the six enron datasets.

As shown in table 3 and figure 4, the ICRM can be more
resilient to ham ratio variations10. While the performance of
both algorithms was comparable for 50% spam (though sig-
nificantly better for NB), the performance of NB drops for

10The 30% and 70% spam results were balanced for the eval-
uation by randomly sampling from the 70% class, reducing it to
30%
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30% spam ratio (5% lower F-score than ICRM) and 70%
spam ratio (9% less accurate than ICRM) while ICRM rela-
tively maintains a good performance. The difference in per-
formance is statistically significant, except for F-Score of the
70% spam experiment, as the p-values obtained for our per-
formance measures clearly reject the null hypothesis of vari-
ation equivalence: F-Score and Accuracy p-values are 0 and
0.01 for 30% spam, and Accuracy p-value is 0.01 for 70%
spam (p-value for F-Score is 0.5 for this case). While one
could argue that NB’s performance could well be increased,
in the unbalanced spam/ham ratio experiments, by chang-
ing the right hand side of equation 3 to 0.3 or 0.7, this act
would imply that, in real situations, one could know a priori
the spam to ham ratio of a given user. The ICRM model,
on the other hand, does not need to adjust any parameter for
different spam ratios—it is automatically more reactive to
whatever ratio it encounters. It has been shown that spam to
ham ratios indeed vary widely Meyer and Whateley (2004);
Delany et al. (2005), hence we conclude that the ICRM’s
ability to better handle unknown spam to ham ratio varia-
tions is more preferable for dynamic data classification in
general and spam detection in particular.

In most Enron sets, the shuffled e-mails in the test set did
very slightly worse than the ordered-by-reception-date ones.
This observation was however statistically insignificant ac-
cording to a t-test with p-value greater than 0.05 and thus
it accepts null hypothesis of similarity between the two per-
formances showing no importance of order for the ICRM
dynamics. To further study the resilience of ICRM and
its adaptive ability to catch concept drifts, we trained both
ICRM and NB on the first 200 emails and then tested them
on sequential overlapping slices of 200 emails. Our results
showed very little decay in performance for both methods in
most data sets (Abi-Haidar and Rocha, 2008). Therefore, we
conclude that the data sets are not appropriate to study the
effects of concept drift. In future work, we plan to test the
ICRM on more appropriate data sets for the study of concept
drift in spam (Delany et al., 2005, 2006b).

The three modifications to the original cross-regulation
model, namely training on both ham and spam classes, fea-
ture selection and cell death elimination have quite improved
the performance of the algorithm to make it rival with tra-
ditional binary classifier. The first modification’s improve-
ment was mostly manifested in enron 4 which cannot only
rely on positive training for the majority of exact uninforma-
tive e-mails it has. Nonetheless, it is debatable whether the
automatically generated messages in enron 4 should be clas-
sified as ham or not. The selection of the first and last fea-
tures boosted the performance of both ICRM and NB about
2% in terms of F-score and Accuracy yet we are still work-
ing on making a better selection without totally disregard-
ing the message body. The elimination of cell death also
improved the overall performance of ICRM about 1%, es-
pecially in terms of long term memory. We are currently

experimenting with a carrying capacity for the E and R con-
centrations that could be promising for future work.

Conclusion
The observations made based on the artificial immune sys-
tem can help us guide or further deepen our understanding
of the natural immune system. For instance, ICRM’s re-
silience to spam to ham ratio show us how dynamic is our
immune system and functional independently of the amount
of pathogens attacking it. In addition, the three modifi-
cations made to the original model can be very insightful:
The improvements made by training on both spam and ham
(rather than only ham or self) reinforce the theories of both
self and nonself antigen recognition by T-cells outside the
thymus. The feature selection makes us wonder whether the
actual T-cell to antigen binding is absolutely arbitrary. Fi-
nally, the elimination of cell death may reinforce the theo-
ries behind long lived cells as far as long term memory is
concerned.

In this paper we have introduced a novel spam detec-
tion algorithm inspired by the cross-regulation model of the
adaptive immune system. We have compared it with Naive
Bayes and another binary classification tool called VTT. Our
model has proved itself competitive with state of art spam
binary classifiers in general and resilient to spam to ham ra-
tio variations in particular through interestingly unique re-
sults that can be further improved by integration, hopefully
in the near future. The overall results, even though not stel-
lar, seem quite promising especially in the area of tracking
concept drifts in spam detection. This original work should
be regarded not only as a promising bio-inspired method
that can be further developed and even integrated with other
methods but also as a model that could help us better un-
derstand the behavior of the T-cell cross-regulation systems
in particular, and the natural vertebrate immune system in
general.
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